Химические свойства серной кислоты разбавленной и концентрированной. Концентрированная серная кислота: свойства, реакции

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

С разбавленными кислотами, которые проявляют окислительные свойства за счет ионов водорода (разбавленные серная, фосфорная, сернистая, все бескислородные и органические кислоты и др.)



реагируют металлы:
расположенные в ряду напряжений до водорода (эти металлы способны вытеснять водород из кислоты);
образующие с этими кислотами растворимые соли (на поверхности этих металлов не образуется защитная солевая
пленка).

В результате реакции образуются растворимые соли и выделяется водород:
2А1 + 6НСI = 2А1С1 3 + ЗН 2
М
g + Н 2 SO 4 = М gS О 4 + Н 2
разб.
С
u + Н 2 SO 4 X (так как С u стоит после Н 2)
разб.
РЬ + Н 2
SO 4 X (так как РЬ SO 4 нерастворим в воде)
разб.
Некоторые кислоты являются окислителями за счет элемента, образующего кислотный остаток, К ним относятся концентрированная серная, а также азотная кислота любой концентрации. Такие кислоты называют кислотами-окислителями.

Анионы данных кислот содержат атомы серы и азота в высших степенях окисления

Окислительные свойства кислотных остатков и значительно сильнее, чем нона водорода Н, поэтому азотная и концентрированная серная кислоты взаимодействуют практически со всеми металлами, расположенными в ряду напряжений как до водорода, так и после него, кроме золота и платины. Так как окислителями в этих случаях являются ноны кислотных остатков (за счет атомов серы и азота в высших степенях окисления), а не ноны водорода Н, то при взаимодействии азотной, а концентрированной серной кислот с металлами не выделяется водород. Металл под действием данных кислот окисляется до характерной (устойчивой) степени окисления и образует соль, а продукт восстановления кислоты зависит от активности металла и степени разбавления кислоты

Взаимодействие серной кислоты с металлами

Разбавленная и концентрированная серные кислоты ведут себя по-разному. Разбавленная серная кислота ведет себя, как обычная кислота. Активные металлы, стоящие в ряду напряжений левее водорода

Li, К , Ca, Na, Mg, Al, Mn, Zn, Fe, Co, Ni, Sn, Pb, H2, Cu, Hg, Ag, Au

вытесняют водород из разбавленной серной кислоты. Мы видим пузырьки водорода при добавлении разбавленной серной кислоты в пробирку с цинком.

H 2 SO 4 + Zn = Zn SO 4 + H 2

Медь стоит в ряду напряжений после водорода – поэтому разбавленная серная кислота не действует на медь. А в концентрированной серной кислоты, цинк и медь, ведут себя таким образом…

Цинк, как активный металл, может образовывать с концентрированной серной кислотой сернистый газ, элементарную серу, и даже сероводород.

2H 2 SO 4 + Zn = SO 2 +ZnSO 4 + 2H 2 O

Медь - менее активный металл. При взаимодействии с концентрированно серной кислотой восстанавливает ее до сернистого газа.

2H 2 SO 4 конц. + Cu = SO 2 + CuSO 4 + 2H 2 O

В пробирках с концентрированной серной кислотой выделяется сернистый газа.

Следует иметь в виду, что на схемах указаны продукты, содержание которых максимально среди возможных продуктов восстановления кислот.

На основании приведенных схем составим уравнения конкретных реакций — взаимодействия меди и магния с концентрированной серной кислотой:
0 +6 +2 +4
С u + 2Н 2 SO 4 = С uSO 4 + SO 2 + 2Н 2 O
конц.
0 +6 +2 -2
g + 5Н 2 SO 4 = 4М gSO 4 + Н 2 S + 4Н 2 O
конц.

Некоторые металлы ( Fe . АI, С r ) не взаимодействуют с концентрированной серной и азотной кислотами при обычной температуре, так как происходит пассивации металла. Это явление связано с образованием на поверхности металла тонкой, но очень плотной оксидной пленки, которая и защищает металл. По этой причине азотную и концентрированную серную кислоты транспортируют в железных емкостях.

Если металл проявляет переменные степени окисления, то с кислотами, являющимися окислителями за счет ионов Н + , он образует соли, в которых его степень окисления ниже устойчивой, а с кислотами-окислителями — соли, в которых его степень окисления более устойчива:
0 +2
F е+Н 2 SO 4 = F е SO 4 +Н 2
0 разб. + 3
F е+Н 2 SO 4 = F е 2 (SO 4 ) 3 + 3 SO 2 + 6Н 2 O
конц


И.И.Новошинский
Н.С.Новошинская

Молекула серной кислоты имеет крестовидную форму:

Физические свойства серной кислоты:

  • плотная маслянистая жидкость без цвета и запаха;
  • плотность 1,83 г/см 3 ;
  • температура плавления 10,3°C;
  • температура кипения 296,2°C;
  • очень гигроскопична, смешивается с водой в любых отношениях;
  • при растворении концентрированной серной кислоты в воде происходит выделение большого кол-ва тепла (ВАЖНО ! Приливают кислоту в воду! Воду в кислоту приливать нельзя!!! )

Серная кислота бывает двух видов:

  • разбавленная H 2 SO 4 (разб) - водный раствор кислоты, в котором процентное содержание H 2 SO 4 не превышает 70%;
  • концентрированная H 2 SO 4 (конц) - водный раствор кислоты, в котором процентное содержание H 2 SO 4 превышает 70%;

Химические свойства H 2 SO 4

Серная кислота полностью диссоциирует в водных растворах в две ступени:

H 2 SO 4 ↔ H + +HSO 4 - HSO 4 - ↔ H + +SO 4 -

Разбавленная серная кислота проявляет все характерные свойства сильных кислот, вступая в реакции:

  • с основными оксидами: MgO+H 2 SO 4 = MgSO 4 +H 2 O
  • с основаниями: H 2 SO 4 +2NaOH = Na 2 SO 4 +2H 2 O
  • с солями: H 2 SO 4 +BaCl 2 = BaSO 4 ↓+2HCl качественная реакция на сульфат-ион: SO 4 2- +Ba 2+ = BaSO 4 ↓

Получение и применение серной кислоты

Серную кислоту в промышленности получают двумя способами: контактным и нитрозным .

Контактный способ получения H 2 SO 4:

  • На первом этапе получают сернистый газ путем обжига серного колчедана: 4FeS 2 +11O 2 = 2Fe 2 O 3 +8SO 2
  • На втором этапе, сернистый газ окисляют кислородом воздуха до серного ангидрида , реакция идет в присутствии оксида ванадия, играющего роль катализатора: 2SO 2 +O 2 = 2SO 3
  • На третьем, последнем этапе, получают олеум, для этого серный ангидрид растворяют в концентрированной серной кислоте: H 2 SO 4 +nSO 3 ↔ H 2 SO 4 ·nSO 3
  • В дальнейшем олеум транспортируется в железных цистернах, а серная кислота получается из олеума разбавлением водой: H 2 SO 4 ·nSO 3 +H 2 O → H 2 SO 4

Нитрозный способ получения H 2 SO 4:

  • На первом этапе очищенный от пыли сернистый газ обрабатывается серной кислотой, в которой растворена нитроза (оксид азота): SO 2 +H 2 O+N 2 O 3 = H 2 SO 4 +2NO
  • Выделившийся оксид азота окисляется кислородом и снова поглощается серной кислотой: 2NO+O 2 = 2NO 2 NO 2 +NO = N 2 O 3

Применение серной кислоты:

  • для осушки газов;
  • в производстве других кислот, солей, щелочей и проч.;
  • для получения удобрений, красителей, моющих средств;
  • в органическом синтезе;
  • в производстве органических веществ.

Соли серной кислоты

Поскольку серная кислота является двухосновной кислотой, она дает два вида солей: средние соли (сульфаты) и кислые соли (гидросульфаты).

Сульфаты хорошо растворяются в воде, исключение составляют CaSO 4 , PbSO 4 , BaSO 4 - первые два плохо растворяются, а сульфат бария практически нерастворим. Сульфаты, в состав которых входит вода, называются купоросами (медный купорос - CuSO 4 ·5H 2 O).

Отличительной особенностью солей серной кислоты является их отношение к нагреванию, например, сульфаты натрия, калия, бария устойчивы к нагреванию, не разлагаясь даже при 1000°C, в то же время, сульфаты меди, алюминия, железа разлагаются даже при незначительном нагревании с образованием оксида металла и серного ангидрида: CuSO4 = CuO+SO 3 .

Горькая (MgSO 4 ·7H 2 O) и глауберова (Na 2 SO 4 ·10H 2 O) соль используются в качестве слабительного средства. Сульфат кальция (CaSO 4 ·2H 2 O) - при изготовлении гипсовых повязок.

Неразбавленная серная кислота представляет собой ковалентное соединение.

В молекуле серная кислота тетраэдрически окружена четырьмя атомами кислорода, два из которых входят в состав гидроксильных групп. Связи S – O – двойные, а S – OH – одинарные.

Бесцветные, похожие на лед кристаллы имеют слоистую структуру: каждая молекула H 2 SO 4 соединена с четырьмя соседними прочными водородными связями, образуя единый пространственный каркас.

Структура жидкой серной кислоты похожа на структуру твердой, только целостность пространственного каркаса нарушена.

Физические свойства серной кислоты

При обычных условиях серная кислота – тяжёлая маслянистая жидкость без цвета и запаха. В технике серной кислотой называют её смеси как с водой, так и с серным ангидридом. Если молярное отношение SO 3: Н 2 О меньше 1, то это водный раствор серной кислоты, если больше 1, – раствор SO 3 в серной кислоте.

100 %-ная H 2 SO 4 кристаллизуется при 10,45 °С; Т кип = 296,2 °С; плотность 1,98 г/см 3 . H 2 SO 4 смешивается с Н 2 О и SO 3 в любых соотношениях с образованием гидратов, теплота гидратации настолько велика, что смесь может вскипать, разбрызгиваться и вызывать ожоги. Поэтому необходимо добавлять кислоту к воде, а не наоборот, поскольку при добавлении воды к кислоте более легкая вода окажется на поверхности кислоты, где и сосредоточится вся выделяющаяся теплота.

При нагревании и кипении водных растворов серной кислоты, содержащих до 70 % H 2 SO 4 , в паровую фазу выделяются только пары воды. Над более концентрированными растворами появляются и пары серной кислоты.

По структурным особенностям и аномалиям жидкая серная кислота похожа на воду. Здесь та же система водородных связей, почти такой же пространственный каркас.

Химические свойства серной кислоты

Серная кислота – одна из самых сильных минеральных кислот, из-за высокой полярности связь Н – О легко разрывается.

    В водном растворе серная кислота диссоциирует , образуя ион водорода и кислотный остаток:

H 2 SO 4 = H + + HSO 4 - ;

HSO 4 - = H + + SO 4 2- .

Суммарное уравнение:

H 2 SO 4 = 2H + + SO 4 2- .

    Проявляет свойства кислот , реагирует с металлами, оксидами металлов, основаниями и солями.

Разбавленная серная кислота не проявляет окислительных свойств, при ее взаимодействии с металлами выделяется водород и соль, содержащая металл в низшей степени окисления. На холоде кислота инертна по отношению к таким металлам, как железо, алюминий и даже барий.

Концентрированная кислота обладает окислительными свойствами. Возможные продукты взаимодействия простых веществ с концентрированной серной кислотой приведены в таблице. Показана зависимость продукта восстановления от концентрации кислоты и степени активности металла: чем активнее металл, тем глубже он восстанавливает сульфат-ион серной кислоты.

    Взаимодействие с оксидами:

CaO + H 2 SO 4 = CaSO 4 = H 2 O.

Взаимодействие с основаниями:

2NaOH + H 2 SO 4 = Na 2 SO 4 + 2H 2 O.

Взаимодействие с солями:

Na 2 CO 3 + H 2 SO 4 = Na 2 SO 4 + CO 2 + H 2 O.

    Окислительные свойства

Серная кислота окисляет HI и НВг до свободных галогенов:

H 2 SO 4 + 2HI = I 2 + 2H 2 O + SO 2.

Серная кислота отнимает химически связанную воду от органических соединений, содержащих гидроксильные группы. Дегидратация этилового спирта в присутствии концентрированной серной кислоты приводит к получению этилена:

С 2 Н 5 ОН = С 2 Н 4 + Н 2 О.

Обугливание сахара, целлюлозы, крахмала и др. углеводов при контакте с серной кислотой объясняется также их обезвоживанием:

C 6 H 12 O 6 + 12H 2 SO 4 = 18H 2 O + 12SO 2 + 6CO 2 .

ОПРЕДЕЛЕНИЕ

Безводная серная кислота представляет собой тяжелую, вязкую жидкость, которая легко смешивается с водой в любой пропорции: взаимодействие характеризуется исключительно большим экзотермическим эффектом (~880 кДж/моль при бесконечном разбавлении) и может привести к взрывному вскипанию и разбрызгиванию смеси, если воду добавлять к кислоте; поэтому так важно всегда использовать обратный порядок в приготовлении растворов и добавлять кислоту в воду, медленно и при перемешивании.

Некоторые физические свойства серной кислоты приведены в таблице.

Безводная H 2 SO 4 — замечательное соединение с необычно высокой диэлектрической проницаемостью и очень высокой электропроводностью, которая обусловлена ионной автодиссоциацией (автопротолизом) соединения, а также эстафетным механизмом проводимости с переносом протона, обеспечивающим протекание электрического тока через вязкую жидкость с большим числом водородных связей.

Таблица 1. Физические свойства серной кислоты.

Получение серной кислоты

Серная кислота — самый важный промышленный химикат и самая дешевая из производимых в большом объеме кислот влюбой стране мира.

Концентрированную серную кислоту («купоросное масло») сначала получали нагреванием «зеленого купороса» FeSO 4 ×nH 2 O и расходовали в большом количестве на получение Na 2 SO 4 и NaCl.

В современном процессе получения серной кислоты используется катализатор, состоящий из оксида ванадия(V) с добавкой сульфата калия на носителе из диоксида кремния или кизельгура. Диоксид серы SO 2 получают сжиганием чистойсеры или при обжиге сульфидной руды (прежде всего пирита или руд Си, Ni и Zn) в процессе извлечения этихметаллов.Затем SO 2 окисляют до триоксида, а потом путем растворения в воде получают серную кислоту:

S + O 2 → SO 2 (ΔH 0 — 297 кДж/моль);

SO 2 + ½ O 2 → SO 3 (ΔH 0 — 9,8 кДж/моль);

SO 3 + H 2 O → H 2 SO 4 (ΔH 0 — 130 кДж/моль).

Химические свойства серной кислоты

Серная кислота - сильная двухосновная кислота. По первой ступени в растворах невысокой концентрации она диссоциирует практически нацело:

H 2 SO 4 ↔H + + HSO 4 — .

Диссоциация по второй ступени

HSO 4 — ↔H + + SO 4 2-

протекает в меньшей степени. Константа диссоциации серной кислоты по второй ступени, выраженная через активности ионов, K 2 = 10 -2 .

Как кислота двухосновная, серная кислота образует два ряда солей: средние и кислые. Средние соли серной кислоты называются сульфатами, а кислые - гидросульфатами.

Серная кислота жадно поглощает пары воды и поэтому часто применяется для осушения газов. Способностью поглощать воду объясняется и обугливание многих органических веществ, особенно относящихся к классу углеводов (клетчатка, сахар и т.д.), при действии на них концентрированной серной кислоты. Серная кислота отнимает от углеводов водород и кислород, которые образуют воду, а углерод выделяется в виде угля.

Концентрированная серная кислота, особенно горячая, — энергичный окислитель. Она окисляет HI и HBr (но не HCl) до свободных галогенов, уголь - до CO 2 , серу - до SO 2 . Указанные реакции выражаются уравнениями:

8HI + H 2 SO 4 = 4I 2 + H 2 S + 4H 2 O;

2HBr + H 2 SO 4 = Br 2 + SO 2 + 2H 2 O;

C + 2H 2 SO 4 = CO 2 + 2SO 2 + 2H 2 O;

S + 2H 2 SO 4 = 3SO 2 + 2H 2 O.

Взаимодействие серной кислоты с металлами протекает различно в зависимости от её концентрации. Разбавленная серная кислота окисляет своим ионом водорода. Поэтому она взаимодействует только с теми металлами, которые стоят в ряду напряжений только до водорода, например:

Zn + H 2 SO 4 = ZnSO 4 + H 2 .

Однако свинец не растворяется в разбавленной кислоте, поскольку образующаяся соль PbSO 4 нерастворима.

Концентрированная серная кислота является окислителем за счет серы (VI). Она окисляет металлы, стоящие в ряду напряжений до серебра включительно. Продукты её восстановления могут быть различными в зависимости от активности металла и от условий (концентрация кислоты, температура). При взаимодействии с малоактивными металлами, например с медью, кислота восстанавливается до SO 2:

Cu + 2H 2 SO 4 = CuSO 4 + SO 2 + 2H 2 O.

При взаимодействии с более активными металлами продуктами восстановления могут быть как диоксид, так и свободная сера и сероводород. Например, при взаимодействии с цинком могут протекать реакции:

Zn + 2H 2 SO 4 = ZnSO 4 + SO 2 + 2H 2 O;

3Zn + 4H 2 SO 4 = 3ZnSO 4 + S↓ + 4H 2 O;

4Zn + 5H 2 SO 4 = 4ZnSO 4 + H 2 S + 4H 2 O.

Применение серной кислоты

Применение серной кислоты меняется от страны к стране и от десятилетия к десятилетию. Так, например в США в настоящее время главная область потребления H 2 SO 4 — производство удобрений (70%), за ним следуют химическое производство, металлургия, очистка нефти (~5% в каждой области). В Великобритании распределение потребления по отраслям иное: только 30% производимой H 2 SO 4 используется в производстве удобрений, зато 18% идет на краски, пигменты и полупродукты производства красителей, 16% на химическое производство, 12% на получение мыла и моющих средств, 10% на производство натуральных и искусственных волокон и 2,5% применяется в металлургии.

Примеры решения задач

ПРИМЕР 1

Задание Определите массу серной кислоты, которую можно получить из одной тонны пирита, если выход оксида серы (IV) в реакции обжига составляет 90%, а оксида серы (VI) в реакции каталитического окисления серы (IV) - 95% от теоретического.
Решение Запишем уравнение реакции обжига пирита:

4FeS 2 + 11O 2 = 2Fe 2 O 3 + 8SO 2 .

Рассчитаем количество вещества пирита:

n(FeS 2) = m(FeS 2) / M(FeS 2);

M(FeS 2) = Ar(Fe) + 2×Ar(S) = 56 + 2×32 = 120г/моль;

n(FeS 2) = 1000 кг / 120 = 8,33 кмоль.

Поскольку в уравнении реакции коэффициент при диоксиде серы в два раза больше, чем коэффициент при FeS 2 , то теоретически возможное количество вещества оксида серы (IV) равно:

n(SO 2) theor = 2 ×n(FeS 2) = 2 ×8,33 = 16,66 кмоль.

А практически полученное количество моль оксида серы (IV) составляет:

n(SO 2) pract = η × n(SO 2) theor = 0,9 × 16,66 = 15 кмоль.

Запишем уравнение реакции окисления оксида серы (IV) до оксида серы (VI):

2SO 2 + O 2 = 2SO 3 .

Теоретически возможное количество вещества оксида серы (VI) равно:

n(SO 3) theor = n(SO 2) pract = 15 кмоль.

А практически полученное количество моль оксида серы (VI) составляет:

n(SO 3) pract = η × n(SO 3) theor = 0,5 × 15 = 14,25 кмоль.

Запишем уравнение реакции получения серной кислоты:

SO 3 + H 2 O = H 2 SO 4 .

Найдем количество вещества серной кислоты:

n(H 2 SO 4) = n(SO 3) pract = 14,25 кмоль.

Выход реакции составляет 100%. Масса серной кислоты равна:

m(H 2 SO 4) = n(H 2 SO 4) × M(H 2 SO 4);

M(H 2 SO 4) = 2×Ar(H) + Ar(S) + 4×Ar(O) = 2×1 + 32 + 4×16 = 98 г/моль;

m(H 2 SO 4) = 14,25 × 98 = 1397 кг.

Ответ Масса серной кислоты равна 1397 кг

Химические свойства серной кислоты такие:

1. Взаимодействие с металлами :

Разбавленная кислота растворяет только те металлы, которые стоят левее водорода в ряду напряжений, например H 2 +1 SO 4 + Zn 0 = H 2 O + Zn +2 SO 4 ;

Окислительные свойства серной кислоты велики. При взаимодействии с различными металлами (кроме Pt, Au) она может восстанавливаться до H 2 S -2 , S +4 O 2 или S 0 , например:

2H 2 +6 SO 4 + 2Ag 0 = S +4 O 2 + Ag 2 +1 SO 4 + 2H 2 O;

5H 2 +6 SO 4 +8Na 0 = H 2 S -2 + 4Na 2 +1 SO 4 + 4H 2 O;

2. Концентрированная кислота H 2 S +6 O 4 также реагирует (при нагревании) с некоторыми неметаллами, превращаясь при этом в соединения серы с более низкой степенью окисления , например:

2H 2 S +6 O 4 + С 0 = 2S +4 O 2 + C +4 O 2 + 2H 2 O;

2H 2 S +6 O 4 + S 0 = 3S +4 O 2 + 2H 2 O;

5H 2 S +6 O 4 + 2P 0 = 2H 3 P +5 O 4 + 5S +4 O 2 + 2H 2 O;

3. С основными оксидами:

H 2 SO 4 + CuO = CuSO 4 + H 2 O;

4. С гидроксидами:

Cu(OH) 2 + H 2 SO 4 = CuSO 4 + 2H 2 O;

2NaOH + H 2 SO 4 = Na 2 SO 4 + 2H 2 O;

5. Взаимодействие с солями при обменных реакциях:

H 2 SO 4 + BaCl 2 = 2HCl + BaSO 4 ;

Образование BaSO 4 (белого осадка, нерастворимого в кислотах) используется для определения этой кислоты и растворимых сульфатов.

Мысль о том, что атом элемента обладает способностью к «насыщению», была высказана в 1853 г. Э. Франклендом при рассмотрении конституции металлорганических соединений. Развивая эту идею, в 1854 г. Кекуле впервые высказал идею о «двухосновности», или «двухатомности» (позднее он стал использовать термин «валентность») серы и кислорода, а в 1857 г. разделил все элементы на одно-, двух- и трехосновные; углерод Кекуле (одновременно с немецким химиком Г. Кольбе) определил как четырёхатомный элемент. В 1858 г. Кекуле (одновременно с шотландским химиком А. Купером) указал на способность атомов углерода при насыщении своих «единиц сродства» образовывать цепи. Это механическое учение о соединении атомов в цепи с образованием молекул легло в основу теории химического строения.

В 1865 г. Кекуле высказал предположение, что молекула бензола имеет форму правильного шестиугольника, образованного шестью углеродными атомами, с которыми связаны шесть атомов водорода. Объединив представление об образовании цепей с учением о существовании кратных связей, он пришел к идее чередования в бензольном кольце простых и двойных связей (сходные структурные формулы предложил незадолго до этого И. Лошмидт). Несмотря на то, что эта теория сразу столкнулась с возражениями, она довольно быстро привилась в науке и практике.

Концепция Кекуле открыла путь к установлению структуры многих циклических (ароматических) соединений. Для объяснения неспособности бензола присоединять галогенводороды Кекуле в 1872 г. выдвинул осцилляционную гипотезу, согласно которой в бензоле простые и двойные связи постоянно меняются местами. В 1867 г. Кекуле опубликовал работу о пространственном расположении атомов в молекуле, где указывал, что связи углеродного атома могут не находиться в одной плоскости.

Кекуле несколько лет был президентом Немецкого химического общества. Он являлся одним из организаторов Международного конгресса химиков в Карлсруэ (1860). Весьма плодотворной была педагогическая деятельность Кекуле. Он автор получившего широкую известность «Учебника органической химии» (1859-1861). Целый ряд учеников Кекуле стали выдающимися химиками; среди них можно особо отметить Л. Мейера, Я. Вант-Гоффа, А. Байера и Э. Фишера.

БУТЛЕРОВ, Александр Михайлович

Русский химик Александр Михайлович Бутлеров родился в Чистополе Казанской губернии в семье помещика, офицера в отставке. Рано лишившись матери, Бутлеров воспитывался в одном из частных пансионов в Казани, затем учился в Казанской гимназии. В шестнадцатилетнем возрасте он поступил на физико-математическое отделение Казанского университета, который в то время был центром естественнонаучных исследований в России.

В первые годы студенчества Бутлеров увлекался ботаникой и зоологией, но затем под влиянием лекций К. К. Клауса и Н. Н. Зинина заинтересовался химией и решил посвятить себя этой науке. В 1849 г. Бутлеров окончил университет и по представлению Клауса был оставлен на кафедре в качестве преподавателя. В 1851 г. он защитил магистерскую диссертацию «Об окислении органических соединений», а в 1854 г. - докторскую диссертацию «Об эфирных маслах». В 1854 г. Бутлеров стал экстраординарным, а в 1857 г. - ординарным профессором химии Казанского университета.

Во время заграничной поездки в 1857-1858 гг. Бутлеров познакомился со многими ведущими химиками Европы, участвовал в заседаниях только что организованного Парижского химического общества. В лаборатории Ш. А. Вюрца Бутлеров начал цикл экспериментальных исследований, послуживший основой теории химического строения. Её главные положения он сформулировал в докладе «О химическом строении вещества», прочитанном на Съезде немецких естествоиспытателей и врачей в Шпейере (сентябрь 1861 г.).

Основы этой теории сформулированы таким образом: 1) «Полагая, что каждому химическому атому свойственно лишь определённое и ограниченное количество химической силы (сродства), с которой он принимает участие в образовании тела, я назвал бы химическим строением эту химическую связь, или способ взаимного соединения атомов в сложном теле»; 2) «... химическая натура сложной частицы определяется натурой элементарных составных частей, количеством их и химическим строением».

С этими постулатами прямо или косвенно связаны и все остальные положения классической теории химического строения. Бутлеров намечает путь для определения химического строения и формулирует правила, которыми можно при этом руководствоваться. Предпочтение он отдаёт синтетическим реакциям, проводимым в условиях, когда радикалы, в них участвующие, сохраняют своё химическое строение.

Оставляя открытым вопрос о предпочтительном виде формул химического строения, Бутлеров высказывался об их смысле: «... когда сделаются известными общие законы зависимости химических свойств тел от их химического строения, то подобная формула будет выражением всех этих свойств». При этом Бутлеров был убеждён, что структурные формулы не могут быть просто условным изображением молекул, а должны отражать их реальное строение. Он подчёркивал, что каждая молекула имеет вполне определённую структуру и не может совмещать несколько таких структур.

Большое значение для становления теории химического строения имело её экспериментальное подтверждение в работах как самого Бутлерова, так и его школы. Бутлеров предвидел, а затем и доказал существование позиционной и скелетной изомерии. Получив третичный бутиловый спирт, он сумел расшифровать его строение и доказал (совместно с учениками) наличие у него изомеров. В 1864 г. Бутлеров предсказал существование двух бутанов и трёх пентанов, а позднее и изобутилена.

Им было высказано также предположение о существовании четырех валериановых кислот; строение первых трёх было определено в 1871 г. Э. Эрленмейером, а четвёртая получена самим Бутлеровым в 1872 г. Чтобы провести идеи теории химического строения через всю органическую химию, Бутлеров издал в 1864-1866 гг. в Казани книгу «Введение к полному изучению органической химии», 2-е изд. которой вышло уже в 1867-1868 гг. на немецком языке.

В 1868 г. по представлению Д. И. Менделеева Бутлеров был избран ординарным профессором Петербургского университета, где и работал до конца жизни. В 1870 г. он стал экстраординарным, а в 1874 г. - ординарным академиком Петербургской академии наук. С 1878 по 1882 г. был Президентом и председателем Отделения химии Русского физико-химического общества.

Преподавательская деятельность Бутлерова длилась 35 лет и проходила в трех высших учебных заведениях: Казанском, Петербургском университетах и на Высших женских курсах (он принимал участие в их организации в 1878 г.). Под руководством Бутлерова работало множество его учеников, среди которых можно назвать В. В. Марковникова,Ф. М. Флавицкого, А. М. Зайцева (в Казани), А. Е. Фаворского, И. Л. Кондакова (в Петербурге). Бутлеров стал основателем знаменитой казанской («бутлеровской») школы химиков-органиков. Бутлеров прочитал также множество популярных лекций, главным образом на химико-технические темы.

Кроме химии, Бутлеров много внимания уделял практическим вопросам сельского хозяйства, садоводству, пчеловодству, а позднее также и разведению чая на Кавказе. С конца 1860-х гг. Бутлеров активно интересовался спиритизмом и медиумизмом, которым посвятил несколько статей; это увлечение Бутлерова и его попытки дать спиритизму научное обоснование стали причиной его полемики с Менделеевым. Умер Бутлеров в дер. Бутлеровка Казанской губернии, не дожив до окончательного признания своей теории. Два наиболее значительных русских химика - Д. И. Менделеев и Н. А. Меншуткин - лишь спустя десять лет после смерти Бутлерова признали справедливость теории химического строения.

Реакция тримеризации бензола



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Котлеты с рисом Как делать котлеты с рисом и фаршем Котлеты с рисом Как делать котлеты с рисом и фаршем Спагетти в мультиварке: как приготовить? Спагетти в мультиварке: как приготовить? Пошаговый рецепт с фото Пошаговый рецепт с фото