ОКТ сетчатки глаза — что это такое. Оптическая когерентная томография сетчатки Оптическая когерентная томография противопоказания

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Возможности современной офтальмологии значительно расширены в сравнении с методами диагностики и лечения заболеваний органов зрения еще каких-то пятьдесят лет назад. Сегодня для постановки точного диагноза, выявления малейших изменений в структурах глаза применяются сложные, высокотехнологичные аппараты и методики. Оптическая когерентная томография (ОКТ), выполняемая с помощью специального сканнера – один из таких методов. Что это такое, кому и когда нужно проводить подобное обследование, как правильно к нему подготовиться, существуют ли противопоказания и возможны ли осложнения – ответы на все эти вопросы ниже.

Преимущества и особенности

Оптическая когерентная томография сетчатки и других элементов глаза – это инновационное офтальмологическое исследование, при котором визуализируются в высоком качестве разрешения поверхностные и глубинные структуры органов зрения. Этот метод является сравнительно новым, не проинформированные пациенты относятся к нему с предубеждением. И совершенно напрасно, так как на сегодняшний день ОКТ считается лучшим, что существует в диагностической офтальмологии.

Выполнение ОКТ занимает всего лишь несколько секунд, а результаты будут подготовлены максимум через час после обследования – можно заехать в клинику на обеденном перерыве, выполнить ОКТ, сразу же получить диагноз и в тот же день начать лечение

К основным преимуществам ОКТ можно отнести:

  • возможность исследовать одновременно оба глаза;
  • скорость процедуры и оперативность получения точных результатов для постановки диагноза;
  • за один сеанс врач получает четкое представление о состоянии макулы, зрительного нерва, сетчатки, роговицы, артерий и капилляров глаза на микроскопическом уровне;
  • ткани элементов глаза можно досконально изучить без биопсии;
  • разрешающие способности ОКТ во много раз превышают показатели обычной компьютерной томографии или УЗИ – обнаруживаются повреждения тканей размером не более 4 микрон, патологические изменения на самых ранних стадиях;
  • не требуется вводить внутривенно контрастные окрашивающие вещества;
  • процедура относится к неинвазивным, потому почти не имеет противопоказаний, не требует специальной подготовки и восстановительного периода.

При проведении когерентной томографии пациент не получает никакого радиационного облучения, что также является большим преимуществом с учетом того, какому вредному воздействию внешних факторов и без этого подвергается каждый современный человек.

В чем суть процедуры

Если через организм человека пропустить световые волны, они будут отражаться от различных органов по-разному. Время задержки световых волн и время их прохождения через элементы глаза, интенсивность отражения замеряют с помощью специальных приборов при проведении томографии. Затем они переносятся на экран, после чего проводятся расшифровка и анализ полученных данных.

Окт сетчатки глаза – абсолютно безопасный и безболезненный метод, поскольку приборы не контактируют с органами зрения, ничего не вводится подкожно или внутрь глазных структур. Но при этом он обеспечивает куда более высокую информативность, чем стандартные КТ или МРТ.


Вот так выглядит изображение на мониторе компьютера, полученное путем сканирования при ОКТ, для его расшифровки потребуются особые познания и навыки специалиста

Именно в способе расшифровки получаемого отражения кроется главная особенность ОКТ. Дело в том, что волны света движутся с очень высокой скоростью, что не позволяет напрямую замерить необходимые показатели. Для этих целей используется специальный прибор – интерферометр Мейкельсона. Он разделяет световую волну на два луча, затем один луч пропускается через глазные структуры, которые необходимо исследовать. А другой направляется на зеркальную поверхность.

Если требуется выполнить обследование сетчатки и макулярной зоны глаза, применяется низкокогерентный инфракрасный луч длиной 830 нм. Если же нужно сделать ОКТ передней камеры глаза, будет нужна волна длиной 1310 нм.

Оба луча соединяются и попадают в фотодетектор. Там они преображаются в интерференционную картинку, которая затем анализируется компьютерной программой и выводится на монитор в виде псевдоизображения. Что же оно покажет? Участки с высокой степенью отражения будут окрашены в более теплые оттенки, а те, которые отражают световые волны слабо, выглядят на картинке почти черными. «Теплыми» на картинке отображаются нервные волокна и пигментный эпителий. Ядерные и плексиформные прослойки сетчатки обладают средней степенью отражаемости. А стекловидное тело выглядит черным, так как оно практически прозрачное и хорошо пропускает световые волны, почти не отражая их.

Для получения полноценной, информативной картинки необходимо пропустить световые волны через глазное яблоко в двух направлениях: поперечном и продольном. Искажения получаемого изображения могут возникать, если роговица отечна, имеют место помутнения стекловидного тела, кровоизлияния, инородные частички.


Одной процедуры продолжительностью менее минуты достаточно, чтобы без инвазивного вмешательства получить максимально полную информацию о состоянии глазных структур, выявить развивающиеся патологии, их формы и стадии

Что можно сделать с помощью оптической томографии:

  • Определить толщину глазных структур.
  • Установить размеры диска зрительного нерва.
  • Выявить и оценить изменения структуры сетчатки и нервных волокон.
  • Оценить состояние элементов переднего участка глазного яблока.

Таким образом, при проведении ОКТ врач-офтальмолог получает возможность за один сеанс изучить все составляющие глаза. Но наиболее информативным и точным получается исследование сетчатки. На сегодняшний день оптическая когерентная томография – самый оптимальный и информативный способ оценки состояния макулярной зоны органов зрения.

Показания к проведению

Оптическую томографию в принципе можно назначать каждому пациенту, обратившемуся к офтальмологу с какими-либо жалобами. Но в отдельных случаях без этой процедуры не обойтись, она заменяет КТ и МРТ и даже опережает их по информативности. Показаниями к проведению ОКТ являются такие симптомы и жалобы пациентов:

  • «Мушки», паутинки, молнии и вспышки перед глазами.
  • Помутнение зрительной картинки.
  • Неожиданное и резкое снижение зрения в одном или обоих глазах.
  • Сильная боль в органах зрения.
  • Значительное повышение внутриглазного давления при глаукоме или по другим причинам.
  • Экзофтальм – выпячивание глазного яблока из орбиты самопроизвольно или после травмы.


Глаукома, повышение внутриглазного давления, изменения диска зрительного нерва, подозрения на отслойку сетчатки, а также подготовка к хирургическим вмешательствам на глазах – все это показания к проведению оптической когерентной томографии

Если предстоит коррекция зрения с использованием лазера, то подобное исследование проводят до операции и после нее, чтобы точно определить угол передней камеры глаза и оценить степень дренажа внутриглазной жидкости (если диагностирована глаукома). Также ОКТ необходима при проведении кератопластики, вживления интрастромальных колец или интраокулярных линз.

Что можно определить и обнаружить с помощью когерентной томографии:

  • изменения внутриглазного давления;
  • врожденные или приобретенные дегенеративные изменения тканей сетчатки;
  • злокачественные и доброкачественные новообразования в структурах глаза;
  • симптомы и степень выраженности диабетической ретинопатии;
  • различные патологии диска зрительного нерва;
  • полиферативную витреоретинопатию;
  • эпиретинальную мембрану;
  • тромбы коронарных артерий или центральной вены глаза и другие сосудистые изменения;
  • разрывы или отслойку макулы;
  • макулярный отек, сопровождающийся формированием кист;
  • язвы роговицы;
  • глубоко проникающий кератит;
  • прогрессирующая близорукость.

Благодаря такому диагностическому исследованию можно выявить даже незначительные изменения и аномалии органов зрения, правильно поставить диагноз, определить степень поражений и оптимальный метод лечения. ОКТ на самом деле помогает сохранить или восстановить зрительные функции пациента. А поскольку процедура совершенно безопасна и безболезненна, часто ее выполняют в профилактических целях при заболеваниях, которые могут осложняться патологиями со стороны глаз – при сахарном диабете, гипертонической болезни, нарушениях мозгового кровообращения, после травм или хирургического вмешательства.

Когда нельзя проводить ОКТ

Наличие кардиостимулятора и других имплантов, состояния, при которых пациент не может фокусировать взгляд, находится в бессознательном состоянии или не способен контролировать свои эмоции и движения, большинство диагностических исследований не проводится. В случае с когерентной томографией все иначе. Процедуру такого рода можно проводить при спутанности сознания и нестабильном психоэмоциональном состоянии пациента.


В отличие от МРТ и КТ, которые хотя информативны, но имеют ряд противопоказаний, ОКТ можно применять для обследования детей без всяких опасений – ребенок не испугается процедуры и не получит никаких осложнений

Главное и фактически единственное препятствие к выполнению ОКТ – это одновременное проведение других диагностических исследований. В день, на который назначена ОКТ, применять какие-либо другие диагностические методы обследования органов зрения нельзя. Если же пациент уже подвергался другим процедурам, то ОКТ переносят на другой день.

Также помехой к получению четкого, информативного изображения может стать близорукость высокой степени или сильное помутнение роговицы и других элементов глазного яблока. В этом случае световые волны будут плохо отражаться и давать искаженное изображение.

Техника выполнения ОКТ

Сразу же нужно сказать, что оптическую когерентную томографию в районных поликлиниках обычно не проводят, так как офтальмологические кабинеты не располагают необходимым оборудованием. Сделать ОКТ можно только в специализированных частных медицинских учреждениях. В крупных городах не составит труда найти заслуживающий доверия офтальмологический кабинет, располагающий ОКТ-сканнером. о проведении процедуры желательно договориться заблаговременно, стоимость когерентной томографии для одного глаза начинается от 800 рублей.

Никакой подготовки к проведению ОКТ не требуется, нужен только функционирующий ОКТ-сканнер и сам пациент. Обследуемого попросят сесть на стул и сфокусировать взгляд на указанной отметке. Если глаз, структуру которого нужно исследовать, не способен сфокусироваться, то взгляд фиксируется насколько возможно другим, здоровым глазом. Находиться в неподвижном состоянии требуется не более двух минут – этого достаточно, чтобы пропустить пучки инфракрасного излучения через глазное яблоко.

В течение этого периода делается несколько снимков в разных плоскостях, после чего медицинский сотрудник отбирает самые четкие и качественные. Их компьютерная система сверяет с имеющейся базой данных, составленной на основании обследований других пациентов. Представлена база различными таблицами и схемами. Чем меньше будет обнаружено совпадений, тем выше вероятность, что структуры глаза обследуемого пациента патологически изменены. Поскольку все аналитические действия и преобразования полученных данных выполняются компьютерными программами в автоматическом режиме, на получение результатов уйдет не более получаса.

ОКТ-сканнер производит идеально точные измерения, обрабатывает их быстро и качественно. Но для постановки корректного диагноза необходимо еще правильно расшифровать полученные результаты. А это требует высокого профессионализма и глубоких познаний в области гистологии сетчатки и хориоидеи врача-офтальмолога. По этой причине расшифровка результатов исследований и постановка диагноза проводятся несколькими специалистами.

Резюме: большинство офтальмологических заболеваний крайне сложно распознать и диагностировать на ранних стадиях, тем более – установить реальную степень поражения глазных структур. При подозрительных симптомах стандартно назначается офтальмоскопия, но этого метода недостаточно, чтобы получить максимально точную картину о состоянии глаз. Более полную информацию дают компьютерная томография и магнитно-резонансная томография, но эти диагностические мероприятия имеют ряд противопоказаний. Оптическая когерентная томография совершенно безопасна и безвредна, ее можно выполнять даже в тех случаях, когда другие методы обследования органов зрения противопоказаны. На сегодняшний день это единственный неинвазивный способ получить максимально полную информацию о состоянии глаз. Единственная сложность, которая может возникнуть – не все офтальмологические кабинеты располагают необходимой для проведения процедуры аппаратурой.

Метод оптической когерентной томографии (optical coherence tomography, сокращенно ОСТ (eng.) или ОКТ (рус.)) представляет собой современное высокоточное неинвазивное исследование различных структур глаза. ОСТ является бесконтактным методом, позволяющим специалисту визуализировать ткани глаза с очень высоким разрешением (1 - 15 микрон), точность которого сравнима с микроскопическим исследованием.

Теоретические основы метода ОСТ были разработаны в 1995 году американским офтальмологом К. Пулафито, и уже в 1996 - 1997 годах компания Carl Zeiss Meditec внедрила в клиническую практику первый прибор для оптической когерентной томографии. Сегодня устройства для ОСТ применяют для диагностики различных заболеваний глазного дна и переднего отрезка глаза

Показания к ОСТ

Метод оптической когерентной томографии позволяет:

  • визуализировать морфологические изменения сетчатки и слоя нервных волокон, а также и оценить их толщину;
  • оценить состояние диска зрительного нерва;
  • осмотреть структуры переднего отрезка глаза и их взаимное пространственное расположение.

Метод может применяться в офтальмологии для диагностики множества патологий заднего отдела глаза, таких как:

  • дегенеративные изменения сетчатки (врожденные и приобретенные, ВМД)
  • кистоидный макулярный отек и макулярный разрыв
  • эпиретинальная мембрана
  • изменения диска зрительного нерва (аномалии, отек, атрофия)
  • диабетическая ретинопатия
  • тромбоз центральной вены сетчатки
  • пролиферативная витреоретинопатия.

Что касается патологий переднего отдела глаза, ОСТ может применяться:

  • для оценки угла передней камеры глаза и работы дренажных систем у пациентов с глаукомой
  • в случае глубоких кератитов и язв роговой оболочки глаза
  • во время осмотра роговицы в ходе подготовки и после выполнения лазерной коррекции зрения и кератопластики
  • для контроля у пациентов с факичными ИОЛ или интрастромальными кольцами.

Видео нашего специалиста

Как проходит исследование

Пациенту предлагают зафиксировать взгляд обследуемым глазом на специальной метке, после чего врач выполняет ряд сканирований и отбирает наиболее информативное изображение, позволяющее оценить состояние органа зрения. Диагностика полностью безболезненна и занимает минимум времени.

2, 3
1 ФГАУ НМИЦ «МНТК «Микрохирургия глаза» им. акад. С. Н. Федорова» Минздрава России, Москва
2 ФКУ «ЦВКГ им. П.В. Мандрыка» Минобороны России, Москва, Россия
3 ФГБОУ ВО РНИМУ им. Н.И. Пирогова Минздрава России, Москва, Россия

Оптическая когерентная томография (ОКТ) впервые была применена для визуализации глазного яблока более 20 лет назад и до сих пор остается незаменимым методом диагностики в офтальмологии. С помощью ОКТ стало возможно неинвазивно получать оптические срезы тканей с разрешением выше, чем у любого другого метода визуализации. Динамическое развитие метода привело к повышению его чувствительности, разрешающей способности, скорости сканирования. В настоящее время ОКТ активно применяется для диагностики, мониторинга и скринига заболеваний глазного яблока, а также для выполнения научных исследований. Совмещение современных технологий ОКТ и фотоакустических, спектроскопических, поляризационных, допплеро- и ангиографических, эластографических методов дало возможность оценивать не только морфологию тканей, но и их функциональное (физиологическое) и метаболическое состояние. Появились операционные микроскопы с функцией интраоперационного выполнения ОКТ. Представленные устройства могут быть использованы для визуализации как переднего, так и заднего отрезка глаза. В данном обзоре рассматривается развитие метода ОКТ, представлены данные о современных ОКТ-приборах в зависимости от их технологических характеристик и возможностей. Описаны методы функциональной ОКТ.

Для цитирования: Захарова М.А., Куроедов А.В. Оптическая когерентная томография: технология, ставшая реальностью // РМЖ. Клиническая офтальмология. 2015. № 4. С. 204–211.

Для цитирования: Захарова М.А., Куроедов А.В. Оптическая когерентная томография: технология, ставшая реальностью // РМЖ. Клиническая офтальмология. 2015. №4. С. 204-211

Optic coherent tomography - technology which became a reality

Zaharova M.A., Kuroedov A.V.

Mandryka Medicine and Clinical Center
The Russian National Research Medical University named after N.I. Pirogov, Moscow

Optical Coherence Tomography (OCT) was first applied for imaging of the eye more than two decades ago and still remains an irreplaceable method of diagnosis in ophthalmology. By OCT one can noninvasively obtain images of tissue with a resolution higher than by any other imaging method. Currently, the OCT is actively used for diagnosing, monitoring and screening of eye diseases as well as for scientific research. The combination of modern technology and optical coherence tomography with photoacoustic, spectroscopic, polarization, doppler and angiographic, elastographic methods made it possible to evaluate not only the morphology of the tissue, but also their physiological and metabolic functions. Recently microscopes with intraoperative function of the optical coherence tomography have appeared. These devices can be used for imaging of an anterior and posterior segment of the eye. In this review development of the method of optical coherence tomography is discussed, information on the current OCT devices depending on their technical characteristics and capabilities is provided.

Key words: оptical coherence tomography (OCT), functional optical coherence tomography, intraoperative optical coherence tomography.

For citation: Zaharova M.A., Kuroedov A.V. Optic coherent tomography - technology which became a reality. // RMJ. Clinical ophthalomology. 2015. № 4. P. 204–211.

Статья посвящена применению оптической когерентной томографии в офтальмологии

Оптическая когерентная томография (ОКТ) – это метод диагностики, который позволяет с высокой разрешающей способностью получать томографические срезы внутренних биологических систем. Название метода впервые приводится в работе коллектива из Массачусетского технологического университета, опубликованной в Science в 1991 г. Авторами были представлены томографические изображения, демонстрирующие in vitro перипапиллярную зону сетчатки и коронарную артерию . Первые прижизненные исследования сетчатки и переднего отрезка глаза с помощью ОКТ были опубликованы в 1993 и 1994 гг. соответственно . В следующем году вышел ряд работ, посвященных применению метода для диагностики и мониторинга заболеваний макулярной области (в т. ч. отека макулы при сахарном диабете, макулярных отверстий, серозной хориоретинопатии) и глаукомы . В 1994 г. разработанная технология ОКТ была передана зарубежному подразделению фирмы Carl Zeiss Inc. (Hamphrey Instruments, Dublin, США), и уже в 1996 г. была создана первая серийная система ОКТ, предназначенная для офтальмологической практики.
Принцип метода ОКТ заключается в том, что световая волна направляется в ткани, где распространяется и отражается или рассеивается от внутренних слоев, которые имеют различные свойства. Получаемые томографические образы – это, по сути, зависимость интенсивности рассеянного или отраженного от структур внутри тканей сигнала от расстояния до них. Процесс построения изображений можно рассматривать следующим образом: на ткань направляется сигнал от источника, и последовательно измеряется интенсивность возвращающегося сигнала через определенные промежутки времени. Так как скорость распространения сигнала известна, то по этому показателю и времени его прохождения определяется расстояние. Таким образом, получается одномерная томограмма (А-скан). Если последовательно смещаться по одной из оси (вертикальной, горизонтальной, косой) и повторять предыдущие измерения, то можно получить двухмерную томограмму. Если последовательно смещаться еще по одной оси, то можно получить набор таких срезов, или объемную томограмму . В ОКТ-системах применяется интерферометрия слабой когерентности. Интерферометрические методы позволяют значительно повысить чувствительность, т. к. с их помощью измеряется амплитуда отраженного сигнала, а не его интенсивность. Основными количественными характеристиками ОКТ-приборов являются осевое (глубинное, аксиальное, вдоль А-сканов) и поперечное (между А-сканами) разрешение, а также скорость сканирования (число А-сканов за 1 с).
В первых ОКТ-приборах использовался последовательный (временной) метод построения изображения (time-domain optical coherence tomography, TD-OC) (табл. 1). В основе этого метода лежит принцип работы интерферометра, предложенный А.А. Михельсоном (1852–1931 гг.). Луч света низкой когерентности от суперлюминесцентного светодиода разделяется на 2 пучка, один из которых отражается исследуемым объектом (глазом), в то время как другой проходит по референтному (сравнительному) пути внутри прибора и отражается специальным зеркалом, положение которого регулируется исследователем. При равенстве длины луча, отраженного от исследуемой ткани, и луча от зеркала возникает явление интерференции, регистрируемое светодиодом. Каждая точка измерения соответствует одному А-скану. Получаемые одиночные А-сканы суммируются, в результате чего формируется двухмерное изображение. Осевое разрешение коммерческих приборов первого поколения (TD-OCT) составляет 8–10 мкм при скорости сканирования 400 А-сканов/с. К сожалению, наличие подвижного зеркала увеличивает время исследования и снижает разрешающую способность прибора. Кроме этого, движения глаз, неизбежно возникающие при данной длительности сканирования, или плохая фиксация во время исследования приводят к формированию артефактов, которые требуют цифровой обработки и могут скрывать важные патологические особенности в тканях.
В 2001 г. была представлена новая технология – ОКТ сверхвысокого разрешения (Ultrahigh-resolution OCT, UHR-OCT), с помощью которой стало возможно получать изображения роговицы и сетчатки с осевым разрешением 2–3 мкм . В качестве источника света использовался фемтосекундный титан-сапфировый лазер (Ti:Al2O3 laser). По сравнению со стандартным разрешением, составляющим 8–10 мкм, ОКТ высокого разрешения стала давать более качественную визуализацию слоев сетчатки in vivo. Новая технология позволяла дифференцировать границы между внутренними и наружными слоями фоторецепторов, а также наружную пограничную мембрану . Несмотря на улучшение разрешающей способности, применение UHR-OCT требовало дорогостоящего и специализированного лазерного оснащения, что не позволяло использовать его в широкой клинической практике .
С внедрением спектральных интерферометров, использующих преобразование Фурье (Spectral domain, SD; Fouirier domain, FD), технологический процесс приобрел ряд преимуществ по сравнению с использованием традиционных временных ОКТ (табл. 1). Хотя методика была известна еще с 1995 г., она не применялась для получения изображений сетчатки почти до начала 2000-х гг. Это связано с появлением в 2003 г. высокоскоростных камер (charge-coupled device, ССD) . Источником света в SD-OCT является широкополосный суперлюминесцентный диод, позволяющий получить низкокогерентный луч, содержащий несколько длин волн. Как и в традиционной, в спектральной ОКТ луч света разделяется на 2 пучка, один из которых отражается от исследуемого объекта (глаза), а второй – от фиксированного зеркала. На выходе интерферометра свет пространственно разлагается по спектру, и весь спектр регистрируется высокоскоростной CCD-камерой. Затем с помощью математического преобразования Фурье происходят обработка спектра интерференции и формирование линейного А-скана. В отличие от традиционной ОКТ, где линейный А-скан получается за счет последовательного измерения отражающих свойств каждой отдельной точки, в спектральной ОКТ линейный А-скан формируется за счет одномоментного измерения лучей, отраженных от каждой отдельной точки . Осевое разрешение современных спектральных ОКТ-приборов достигает 3–7 мкм, а скорость сканирования – более 40 тыс. А-сканов/с. Безусловно, основным преимуществом SD-OCT является его высокая скорость сканирования. Во-первых, она позволяет значительно улучшить качество получаемых изображений путем уменьшения артефактов, возникающих при движениях глаз во время исследования. К слову, стандартный линейный профиль (1024 А-сканов) можно получить в среднем всего за 0,04 с. За это время глазное яблоко совершает только микросаккадные движения с амплитудой в несколько угловых секунд, не влияющих на процесс исследования . Во-вторых, стала возможна 3D-реконструкция изображения, позволяющая оценить профиль исследуемой структуры и ее топографию. Получение множества изображений одновременно при спектральной ОКТ дало возможность диагностики небольших по размерам патологических очагов. Так, при TD-OCT макула отображается по данным 6 радиальных сканов в противовес 128–200 сканам аналогичной области при выполнении SD-OCT . Благодаря высокому разрешению можно четко визуализировать слои сетчатки и внутренние слои сосудистой оболочки. Итогом выполнения стандартного исследования SD-OCT является протокол, представляющий полученные результаты как графически, так и в абсолютных значениях. Первый коммерческий спектральный оптический когерентный томограф был разработан в 2006 г., им стал RTVue 100 (Optovue, США).

В настоящее время некоторые спектральные томографы обладают дополнительными протоколами сканирования, к которым относятся: модуль анализа пигментного эпителия, лазерный сканирующий ангиограф, модуль увеличенной глубины изображения (Enhanced depth imagine, EDI-OCT), глаукомный модуль (табл. 2).

Предпосылкой для разработки модуля увеличенной глубины изображения (EDI-OCT) было ограничение визуализации сосудистой оболочки с помощью спектральной ОКТ за счет поглощения света пигментным эпителием сетчатки и рассеивания его структурами хориоидеи . Ряд авторов использовали спектрометр с длиной волны 1050 нм, с помощью которого удалось качественно визуализировать и провести количественную оценку собственно сосудистой оболочки . В 2008 г. был описан способ получения изображения сосудистой оболочки, который был реализован путем размещения SD-OCТ прибора достаточно близко к глазу, в результате чего стало возможным получение четкого изображение хориоидеи, толщину которой также можно было измерить (табл. 1) . Принцип метода заключается в возникновении зеркальных артефактов из преобразования Фурье. При этом формируется 2 симметричных изображения – позитивное и негативное относительно нулевой линии задержки. Следует отметить, что чувствительность метода снижается с увеличением расстояния от интересующей ткани глаза до этой условной линии. Интенсивность отображения слоя пигментного эпителия сетчатки характеризует чувствительность метода – чем ближе слой к линии нулевой задержки, тем больше его рефлективность. Большинство приборов этого поколения предназначено для исследования слоев сетчатки и витреоретинального интерфейса, поэтому сетчатка расположена ближе к нулевой линии задержки, чем сосудистая оболочка. Во время обработки сканов нижняя половина изображения, как правило, удаляется, отображается только его верхняя часть. Если смещать ОКТ-сканы так, чтобы они пересекли линию нулевой задержки, то сосудистая оболочка окажется ближе к ней, это позволит визуализировать ее более четко . В настоящее время модуль увеличенной глубины изображения доступен у томографов Spectralis (Heidelberg Engineering, Германия) и Cirrus HD-OCT (Carl Zeiss Meditec, США) . Технология EDI-OCT применяется не только для исследования сосудистой оболочки при различной глазной патологии, но и с целью визуализации решетчатой пластинки и оценки ее смещения в зависимости от стадии глаукомы .
К методам Fourier-domain-OCT также относится ОКТ с перестраиваемым источником (swept-source OCT, SS-OCT; deep range imaging, DRI-OCT). В SS-OCT используются лазерные источники со свипированием частоты, т. е. лазеры, у которых частота излучения перестраивается с большой скоростью в пределах определенной спектральной полосы. При этом регистрируется изменение не частоты, а амплитуды отраженного сигнала во время цикла перестройки частоты . В приборе используется 2 параллельных фотодетектора, благодаря которым скорость сканирования составляет 100 тыс. А-сканов/с (в отличие от 40 тыс. А-сканов в SD-OCT). Технология SS-OCT обладает рядом преимуществ. Длина волны 1050 нм, используемая в SS-OCT (в SD-OCT длина волны – 840 нм), обеспечивает возможность четкой визуализации глубоких структур, таких как хориоидеа и решетчатая пластинка, при этом качество изображения в значительно меньшей степени зависит от расстояния интересующей ткани до линии нулевой задержки, как в EDI-OCT . Кроме того, при данной длине волны происходит меньшее рассеивание света при его прохождении сквозь мутный хрусталик, что обеспечивает более четкие изображения у пациентов с катарактой. Окно сканирования охватывает 12 мм заднего полюса (для сравнения: у SD-OCT – 6–9 мм), поэтому на одном скане одновременно могут быть представлены зрительный нерв и макула . Результатами исследования методом SS-OCT являются карты, которые могут быть представлены в виде общей толщины сетчатки или отдельных ее слоев (слой нервных волокон сетчатки, слой ганглиозных клеток вместе с внутренним плексиморфным слоем, хориоидеа). Технология swept-source OCT активно применяется для исследований патологии макулярной зоны, хориоидеи, склеры, стекловидного тела, а также для оценки слоя нервных волокон и решетчатой пластинки при глаукоме . В 2012 г. был представлен первый коммерческий Swept-Source OCT, реализованный в приборе Topcon Deep Range Imaging (DRI) OCT-1 Atlantis 3D SS-OCT (Topcon Medical Systems, Japan). С 2015 г. на зарубежном рынке стал доступен коммерческий образец DRI OCT Triton (Topcon, Japan) cо скоростью сканирования 100 тыс. А-сканов/с и разрешением 2–3 мкм.
Традиционно ОКТ использовалась для пред- и послеоперационной диагностики. С развитием технологического процесса стало возможно использование ОКТ-технологии, интегрированной в хирургический микроскоп. В настоящее время предлагаются сразу несколько коммерческих устройств с функцией выполнения интраоперационной ОКТ. Envisu SD-OIS (spectral-domain ophthalmic imaging system, SD-OIS, Bioptigen, США) – спектральный оптический когерентный томограф, предназначенный для визуализации ткани сетчатки, также с его помощью можно получить изображения роговицы, склеры и конъюнктивы. SD-OIS включает в себя портативный зонд и установки микроскопа, имеет осевое разрешение 5 мкм и скорость сканирования 27 кГц. Другая компания – OptoMedical Technologies GmbH (Германия) также разработала и представила ОКТ-камеру, которая может быть установлена на операционный микроскоп. Камера может быть использована для визуализации переднего и заднего сегментов глаза. Компания указывает, что данное устройство может быть полезным при выполнении таких хирургических пособий, как пересадка роговицы, операции по поводу глаукомы, хирургия катаракты и витреоретинальная хирургия. OPMI Lumera 700/Rescan 700 (Carl Zeiss Meditec, США), выпущенный в 2014 г., является первым коммерчески доступным микроскопом с интегрированным в него оптическим когерентным томографом. Оптические пути микроскопа используются для получения ОКТ-изображения в реальном времени. С помощью прибора можно измерить толщину роговицы и радужки, глубину и угол передней камеры во время хирургического вмешательства. ОКТ подходит для наблюдения и контроля нескольких этапов в хирургии катаракты: лимбальных разрезов, капсулорексиса и факоэмульсификации. Кроме того, система может обнаружить остатки вискоэластика и контролировать положение линзы во время и в конце операции. Во время хирургического вмешательства на заднем сегменте можно визуализировать витреоретинальные спайки, отслойку задней гиалоидной мембраны, наличие фовеолярных изменений (отек, разрыв, неоваскуляризация, кровоизлияние). В настоящее время в дополнение к уже имеющимся разрабатываются новые установки .
ОКТ – по сути, метод, позволяющий оценить на гистологическом уровне морфологию тканей (форму, структуру, размер, пространственную организацию в целом) и их составных частей. Приборы, которые включают в себя современные ОКТ-технологии и такие методы, как фотоакустическая томография, спектроскопическая томография, поляризационная томография, допплерография и ангиография, эластография, оптофизиология, дают возможность оценить функциональное (физиологическое) и метаболическое состояние исследуемых тканей. Поэтому в зависимости от возможностей, которыми может располагать ОКТ, ее принято классифицировать на морфологическую, функциональную и мультимодальную.
Фотоакустическая томография (photoacoustic tomography, PAT) использует различия в поглощении тканями коротких лазерных импульсов, последующем их нагреве и крайне быстром терморасширении для получения ультразвуковых волн, которые детектируются пьезоэлектрическими приемниками. Преобладание гемоглобина в качестве основного абсорбента данного излучения означает, что с помощью фотоакустической томографии можно получить контрастные изображения сосудистой сети. В то же время метод дает относительно мало информации о морфологии окружающей ткани. Таким образом, сочетание фотоакустической томографии и ОКТ позволяет оценить микрососудистую сеть и микроструктуру окружающих тканей .
Способность биологических тканей поглощать или рассеивать свет в зависимости от длины волны может быть использована для оценки функциональных параметров – в частности, насыщения гемоглобина кислородом. Этот принцип реализован в спектроскопической ОКТ (Spectroscopic OCT, SP-OCT). Хотя метод в настоящее время находится в стадии разработки, а его использование ограничивается экспериментальными моделями, тем не менее он представляется перспективным в плане исследования насыщения кислородом крови, предраковых поражений, внутрисосудистых бляшек и ожогов .
Поляризационная ОКТ (Polarization sensitive OCT, PS-OCT) измеряет состояние поляризации света и основана на том факте, что некоторые ткани могут изменить состояние поляризации зондирующего светового пучка. Различные механизмы взаимодействия света и тканей могут вызвать такие изменения состояния поляризации, как двойное лучепреломление и деполяризацию, что уже частично ранее использовалось в лазерной поляриметрии. Двулучепреломляющими тканями являются строма роговицы, склера, глазные мышцы и сухожилия, трабекулярная сеть, слой нервных волокон сетчатки и рубцовая ткань . Эффект деполяризации наблюдается при исследовании меланина, содержащегося в тканях пигментного эпителия сетчатки (ПЭС), пигментном эпителии радужки, невусах и меланомах хориоидеи, а также в виде скоплений пигмента сосудистой оболочки . Первый поляризационный низкокогерентный интерферометр был реализован в 1992 г. . В 2005 г. PS-OCT был продемонстрирован для визуализации сетчатки человеческого глаза in vivo . Одно из преимуществ метода PS-OCT заключается в возможности детальной оценки ПЭС, особенно в тех случаях, когда на ОКТ, например, при неоваскулярной макулодистрофии, пигментный эпителий плохо различим из-за сильного искажения слоев сетчатки и обратного светорассеяния (рис. 1). Есть и прямое клиническое предназначение этого метода. Дело в том, что визуализация атрофии слоя ПЭС может объяснить, почему у этих пациентов на фоне лечения после анатомического восстановления сетчатки острота зрения не улучшается . Поляризационная ОКТ также применяется для оценки состояния слоя нервных волокон при глаукоме . Следует отметить, что и другие структуры, деполяризующие в пределах пораженной сетчатки, могут быть обнаружены с помощью PS-OCT. Первоначальные исследования у больных с диабетическим макулярным отеком показали, что жесткие экссудаты являются деполяризующими структурами. Поэтому PS-OCT может быть использована для обнаружения и количественной оценки (размер, количество) жестких экссудатов при этом состоянии .
Оптическая когерентная эластография (optical coherence elastography, OCE) используется для определения биомеханического свойства тканей. ОКТ-эластография является аналогом ультразвуковой сонографии и эластографии, но с преимуществами, присущими ОКТ, такими как высокое разрешение, неинвазивность, получение изображений в реальном времени, глубина проникновения в ткани. Метод впервые был продемонстрирован в 1998 г. для изображения механических свойств in vivo кожи человека . Экспериментальные исследования донорских роговиц с помощью данного метода продемонстрировали, что ОКТ-эластография может количественно оценить клинически значимые механические свойства данной ткани .
Первые спектральные ОКТ с функцией допплерографии (Doppler optical coherence tomography, D-OCT) для измерения глазного кровотока появились в 2002 г. . В 2007 г. был измерен суммарный кровоток сетчатки с помощью кольцевых В-сканов вокруг зрительного нерва . Однако метод имеет ряд ограничений. Например, с помощью допплеровской ОКТ трудно различить медленный кровоток в мелких капиллярах . Помимо этого, большинство сосудов проходят почти перпендикулярно к лучу скана, поэтому обнаружение сигнала допплеровского сдвига критически зависит от угла падающего света . Попыткой преодолеть недостатки D-OCT является ОКТ-ангиография. Для реализации данного метода была необходима высококонтрастная и сверхскоростная технология ОКТ. Ключевым в развитии и усовершенствовании методики стал алгоритм под названием «сплит-спектральная ангиография с декорреляцией амплитуды» (split-spectrum amplitude decorrelation angiography, SS-ADA). SS-ADA-алгоритм подразумевает проведение анализа при использовании разделения полного спектра оптического источника на несколько частей с последующим раздельным подсчетом декорреляции для каждого частотного диапазона спектра. Одновременно проводится анизотропный анализ декорреляции и выполняется ряд сканов с полной спектральной шириной, которые обеспечивают высокое пространственное разрешение сосудистой сети (рис. 2, 3) . Данный алгоритм используется в томографе Avanti RTVue XR (Optovue, США). ОКТ-ангиография является неинвазивной трехмерной альтернативой обычной ангиографии. К преимуществам метода относятся неинвазивность исследования, отсутствие необходимости применения флуоресцентных красителей, возможность измерения глазного кровотока в сосудах в количественном выражении.

Оптофизиология – способ неинвазивного изучения физиологических процессов в тканях с помощью ОКТ. ОКТ чувствительна к пространственным изменениям в оптическом отражении или рассеянии света тканями, связанными с локальными изменениями показателя преломления. Физиологические процессы, происходящие на клеточном уровне, такие как деполяризация мембраны, набухание клеток и изменения метаболизма, могут привести к небольшим, но обнаруживаемым изменениям локальных оптических свойств биологической ткани. Первые доказательства того, что ОКТ может быть использована для получения и оценки физиологической реакции на световую стимуляцию сетчатки, были продемонстрированы в 2006 г. . В последующем данная методика была применена для исследования человеческой сетчатки in vivo. В настоящее время рядом исследователей продолжается работа в этом направлении .
ОКТ – один из самых успешных и широко используемых методов визуализации в офтальмологии. В настоящее время приборы для технологии находятся в списке продукции более чем 50 компаний в мире. За последние 20 лет разрешение улучшилось в 10 раз, а скорость сканирования увеличилась в сотни раз. Непрерывный прогресс в технологии ОКТ превратил этот метод в ценный инструмент для исследования структур глаза на практике. Разработка за последнее десятилетие новых технологий и дополнений ОКТ позволяет поставить точный диагноз, осуществлять динамическое наблюдение и оценивать результаты лечения. Это пример того, как новые технологии могут решать реальные медицинские проблемы. И, как это часто бывает с новыми технологиями, дальнейший опыт применения и разработка приложений могут дать возможность более глубокого понимания патогенеза патологии глаз.

Литература

1. Huang D., Swanson E.A., Lin C.P. et al. Optical coherence tomography // Science. 1991. Vol. 254. № 5035. P. 1178–1181.
2. Swanson E.A., Izatt J.A., Hee M.R. et al. In-vivo retinal imaging by optical coherence tomography // Opt Lett. 1993. Vol. 18. № 21. P. 1864–1866.
3. Fercher A.F., Hitzenberger C.K., Drexler W., Kamp G., Sattmann H. In-Vivo optical coherence tomography // Am J Ophthalmol. 1993. Vol. 116. № 1. P. 113–115.
4. Izatt J.A., Hee M.R., Swanson E.A., Lin C.P., Huang D., Schuman J.S., Puliafito C.A., Fujimoto J.G. Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography // Arch Ophthalmol. 1994. Vol. 112. № 12. P. 1584–1589.
5. Puliafito C.A., Hee M.R., Lin C.P., Reichel E., Schuman J.S., Duker J.S., Izatt J.A., Swanson E.A., Fujimoto J.G. Imaging of macular diseases with optical coherence tomography // Ophthalmology. 1995. Vol. 102. № 2. P. 217–229.
6. Schuman J.S., Hee M.R., Arya A.V., Pedut-Kloizman T., Puliafito C.A., Fujimoto J.G., Swanson E.A. Optical coherence tomography: a new tool for glaucoma diagnosis // Curr Opin Ophthalmol. 1995. Vol. 6. № 2. P. 89–95.
7. Schuman J.S., Hee M.R., Puliafito C.A., Wong C., Pedut-Kloizman T., Lin C.P., Hertzmark E., Izatt .JA., Swanson E.A., Fujimoto J.G. Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography // Arch Ophthalmol. 1995. Vol. 113. № 5. P. 586–596.
8. Hee M.R., Puliafito C.A., Wong C., Duker J.S., Reichel E., Schuman J.S., Swanson E.A., Fujimoto J.G. Optical coherence tomography of macular holes // Ophthalmology. 1995 Vol. 102. № 5. P. 748–756.
9. Hee M.R., Puliafito C.A., Wong C., Reichel E., Duker J.S., Schuman J.S., Swanson E.A., Fujimoto J.G. Optical coherence tomography of central serous chorioretinopathy // Am J Ophthalmol.1995. Vol. 120. № 1. P. 65–74.
10. Hee M.R., Puliafito C.A., Wong C., Duker J.S., Reichel E., Rutledge B., Schuman J.S., Swanson E.A., Fujimoto J.G. Quantitative assessment of macular edema with optical coherence tomography // Arch Ophthalmol. 1995. Vol. 113. № 8. P. 1019–1029.
11. Висковатых А.В., Пожар В.Э., Пустовойт В.И. Разработка оптического когерентного томографа для офтальмологии на быстроперестраиваемых акустооптических фильтрах // Сборник материалов III Евразийского конгресса по медицинской физике и инженерии «Медицинская физика – 2010». 2010. Т. 4. C. 68–70. М., 2010 .
12. Drexler W., Morgner U., Ghanta R.K., Kartner F.X., Schuman J.S., Fujimoto J.G. Ultrahigh-resolution ophthalmic optical coherence tomography // Nat Med. 2001. Vol. 7. № 4. P. 502–507.
13. Drexler W., Sattmann H., Hermann B. et al. Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography // Arch Ophthalmol. 2003. Vol. 121. P. 695–706.
14. Ko T.H., Fujimoto J.G., Schuman J.S. et al. Comparison of ultrahigh and standard resolution optical coherence tomography for imaging of macular pathology // Arch Ophthalmol. 2004. Vol. 111. P. 2033–2043.
15. Ko T.H., Adler D.C., Fujimoto J.G. et al. Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source // Opt Express. 2004. Vol. 12. P. 2112–2119.
16. Fercher A.F., Hitzenberger C.K., Kamp G., El-Zaiat S.Y. Measurement of intraocular distances by backscattering spectral interfereometry // Opt Commun. 1995. Vol. 117. P. 43–48.
17. Choma M.A., Sarunic M.V., Yang C.H., Izatt J.A. Sensitivity advantage of swept source and Fourier domain optical coherence tomography // Opt Express. 2003. Vol. 11. № 18. P. 2183–2189.
18. Астахов Ю.С., Белехова С.Г. Оптическая когерентная томография: как все начиналось и современные диагностические возможности методики // Офтальмологические ведомости. 2014. Т. 7. № 2. C. 60–68. .
19. Свирин А.В., Кийко Ю.И., Обруч Б.В., Богомолов А.В. Спектральная когерентная оптическая томография: принципы и возможности метода // Клиническая офтальмология. 2009. Т. 10. № 2. C. 50–53 .
20. Kiernan D.F., Hariprasad S.M., Chin E.K., Kiernan C.L, Rago J., Mieler W.F. Prospective comparison of cirrus and stratus оptical coherence tomography for quantifying retinal thickness // Am J Ophthalmol. 2009. Vol. 147. № 2. P. 267–275.
21. Wang R.K. Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a monte carlo study towards optical clearing of biotissues // Phys Med Biol. 2002. Vol. 47. № 13. P. 2281–2299.
22. Povazay B., Bizheva K., Hermann B. et al. Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm // Opt Express. 2003. Vol. 11. № 17. P. 1980–1986.
23. Spaide R.F., Koizumi H., Pozzoni M.C. et al. Enhanced depth imaging spectral-domain optical coherence tomography // Am J Ophthalmol. 2008. Vol. 146. P. 496–500.
24. Margolis R., Spaide R.F. A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes // Am J Ophthalmol. 2009. Vol. 147. P. 811–815.
25. Ho J., Castro D.P., Castro L.C., Chen Y., Liu J., Mattox C., Krishnan C., Fujimoto J.G., Schuman J.S., Duker J.S. Clinical assessment of mirror artifacts in spectral-domain optical coherence tomography // Invest Ophthalmol Vis Sci. 2010. Vol. 51. № 7. P. 3714–3720.
26. Anand R. Enhanced depth optical coherence tomographyiImaging - a review // Delhi J Ophthalmol. 2014. Vol. 24. № 3. P. 181–187.
27. Rahman W., Chen F.K., Yeoh J. et al. Repeatability of manual subfoveal choroidal thickness measurements in healthy subjects using the technique of enhanced depth imaging optical coherence tomography // Invest Ophthalmol Vis Sci. 2011. Vol. 52. № 5. P. 2267–2271.
28. Park S.C., Brumm J., Furlanetto R.L., Netto C., Liu Y., Tello C., Liebmann J.M., Ritch R. Lamina cribrosa depth in different stages of glaucoma // Invest Ophthalmol Vis Sci. 2015. Vol. 56. № 3. P. 2059–2064.
29. Park S.C., Hsu A.T., Su D., Simonson J.L., Al-Jumayli M., Liu Y., Liebmann J.M., Ritch R. Factors associated with focal lamina cribrosa defects in glaucoma // Invest Ophthalmol Vis Sci. 2013. Vol. 54. № 13. P. 8401–8407.
30. Faridi O.S., Park S.C., Kabadi R., Su D., De Moraes C.G., Liebmann J.M., Ritch R. Effect of focal lamina cribrosa defect on glaucomatous visual field progression // Ophthalmology. 2014 Vol. 121. № 8. P. 1524–1530.
31. Potsaid B., Baumann B., Huang D., Barry S., Cable A.E., Schuman J.S., Duker J.S., Fujimoto J.G. Ultrahigh speed 1050nm swept source / Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second // Opt Express 2010. Vol. 18. № 19. P. 20029–20048.
32. Adhi M., Liu J.J., Qavi A.H., Grulkowski I., Fujimoto J.G., Duker J.S. Enhanced visualization of the choroido-scleral interface using swept-source OCT // Ophthalmic Surg Lasers Imaging Retina. 2013. Vol. 44. P. 40–42.
33. Mansouri K., Medeiros F.A., Marchase N. et al. Assessment of choroidal thickness and volume during the water drinking test by swept-source optical coherence tomography // Ophthalmology. 2013. Vol. 120. № 12. P. 2508–2516.
34. Mansouri K., Nuyen B., Weinreb R.N. Improved visualization of deep ocular structures in glaucoma using high penetration optical coherence tomography // Expert Rev Med Devices. 2013. Vol. 10. № 5. P. 621–628.
35. Takayama K., Hangai M., Kimura Y. et al. Three-dimensional imaging of lamina cribrosa defects in glaucoma using sweptsource optical coherence tomography // Invest Ophthalmol Vis Sci. 2013. Vol. 54. № 7. P. 4798–4807.
36. Park H.Y., Shin H.Y., Park C.K. Imaging the posterior segment of the eye using swept-source optical coherence tomography in myopic glaucoma eyes: comparison with enhanced-depth imaging // Am J Ophthalmol. 2014. Vol. 157. № 3. P. 550–557.
37. Michalewska Z., Michalewski J., Adelman R.A., Zawislak E., Nawrocki J. Choroidal thickness measured with swept source optical coherence tomography before and after vitrectomy with internal limiting membrane peeling for idiopathic epiretinal membranes // Retina. 2015. Vol. 35. № 3. P. 487–491.
38. Lopilly Park H.Y., Lee N.Y., Choi J.A., Park C.K. Measurement of scleral thickness using swept-source optical coherence tomography in patients with open-angle glaucoma and myopia // Am J Ophthalmol. 2014. Vol. 157. № 4. P. 876–884.
39. Omodaka K., Horii T., Takahashi S., Kikawa T., Matsumoto A., Shiga Y., Maruyama K., Yuasa T., Akiba M., Nakazawa T. 3D Evaluation of the Lamina Cribrosa with Swept-Source Optical Coherence Tomography in Normal Tension Glaucoma // PLoS One. 2015 Apr 15. Vol. 10 (4). e0122347.
40. Mansouri K., Nuyen B., Weinreb R. Improved visualization of deep ocular structures in glaucoma using high penetration optical coherence tomography // Expert Rev Med Devices. 2013. Vol. 10. № 5. P. 621–628.
41. Binder S. Optical coherence tomography/ophthalmology: Intraoperative OCT improves ophthalmic surgery // BioOpticsWorld. 2015. Vol. 2. P. 14–17.
42. Zhang Z.E., Povazay B., Laufer J., Aneesh A., Hofer B., Pedley B., Glittenberg C., Treeby B., Cox B., Beard P., Drexler W. Multimodal photoacoustic and optical coherence tomography scanner using an all optical detection scheme for 3D morphological skin imaging // Biomed Opt Express. 2011. Vol. 2. № 8. P. 2202–2215.
43. Morgner U., Drexler W., Ka..rtner F. X., Li X. D., Pitris C., Ippen E. P., and Fujimoto J. G. Spectroscopic optical coherence tomography // Opt Lett. 2000. Vol. 25. № 2. P. 111–113.
44. Leitgeb R., Wojtkowski M., Kowalczyk A., Hitzenberger C. K., Sticker M., Ferche A. F. Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography // Opt Lett. 2000. Vol. 25. № 11. P. 820–822.
45. Pircher M., Hitzenberger C.K., Schmidt-Erfurth U. Polarization sensitive optical coherence tomography in the human eye // Progress in Retinal and Eye Research. 2011. Vol. 30. № 6. P. 431–451.
46. Geitzinger E., Pircher M., Geitzenauer W., Ahlers C., Baumann B., Michels S., Schmidt-Erfurth U., Hitzenberger C.K. Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography // Opt Express. 2008. Vol. 16. P. 16410–16422.
47. Pircher M., Goetzinger E., Leitgeb R., Hitzenberger C.K. Transversal phase resolved polarization sensitive optical coherence tomography // Phys Med Biol. 2004. Vol. 49. P. 1257–1263.
48. Mansouri K., Nuyen B., N Weinreb R. Improved visualization of deep ocular structures in glaucoma using high penetration optical coherence tomography // Expert Rev Med Devices. 2013. Vol. 10. № 5. P. 621–628.
49. Geitzinger E., Pircher M., Hitzenberger C.K. High speed spectral domain polarization sensitive optical coherence tomography of the human retina // Opt Express. 2005. Vol. 13. P. 10217–10229.
50. Ahlers C., Gotzinger E., Pircher M., Golbaz I., Prager F., Schutze C., Baumann B., Hitzenberger C.K., Schmidt-Erfurth U. Imaging of the retinal pigment epithelium in age-related macular degeneration using polarization-sensitive optical coherence tomography // Invest Ophthalmol Vis Sci. 2010. Vol. 51. P. 2149–2157.
51. Geitzinger E., Baumann B., Pircher M., Hitzenberger C.K. Polarization maintaining fiber based ultra-high resolution spectral domain polarization sensitive optical coherence tomography // Opt Express. 2009. Vol. 17. P. 22704–22717.
52. Lammer J., Bolz M., Baumann B., Geitzinger E., Pircher M., Hitzenberger C., Schmidt-Erfurth U. 2010. Automated Detection and Quantification of Hard Exudates in Diabetic Macular Edema Using Polarization Sensitive Optical Coherence Tomography // ARVO abstract 4660/D935.
53. Schmitt J. OCT elastography: imaging microscopic deformation and strain of tissue // Opt Express. 1998. Vol. 3. № 6. P. 199–211.
54. Ford M.R., Roy A.S., Rollins A.M. and Dupps W.J.Jr. Serial biomechanical comparison of edematous,normal, and collagen crosslinked human donor corneas using optical coherence elastography // J Cataract Refract Surg. 2014. Vol. 40. № 6. P. 1041–1047.
55. Leitgeb R., Schmetterer L.F., Wojtkowski M., Hitzenberger C.K., Sticker M., Fercher A.F. Flow velocity measurements by frequency domain short coherence interferometry. Proc. SPIE. 2002. P. 16–21.
56. Wang Y., Bower B.A., Izatt J.A., Tan O., Huang D. In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography // J Biomed Opt. 2007. Vol. 12. P. 412–415.
57. Wang R. K., Ma Z., Real-time flow imaging by removing texture pattern artifacts in spectral-domain optical Doppler tomography // Opt. Lett. 2006. Vol. 31. № 20. P. 3001–3003.
58. Wang R. K., Lee A. Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo // Opt Express. 2009. Vol. 17. № 11. P. 8926–8940.
59. Wang Y., Bower B. A., Izatt J. A., Tan O., Huang D. Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography // J Biomed Opt. 2008. Vol. 13. № 6. P. 640–643.
60. Wang Y., Fawzi A., Tan O., Gil-Flamer J., Huang D. Retinal blood flow detection in diabetic patients by Doppler Fourier domain optical coherence tomography // Opt Express. 2009. Vol. 17. № 5. P. 4061–4073.
61. Jia Y., Tan O., Tokayer J., Potsaid B., Wang Y., Liu J.J., Kraus M.F., Subhash H., Fujimoto J.G., Hornegger J., Huang D. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography // Opt Express. 2012. Vol. 20. № 4. P. 4710–4725.
62. Jia Y., Wei E., Wang X., Zhang X., Morrison J.C., Parikh M., Lombardi L.H., Gattey D.M., Armour R.L., Edmunds B., Kraus M.F., Fujimoto J.G., Huang D. Optical coherence tomography angiography of optic disc perfusion in glaucoma // Ophthalmology. 2014. Vol. 121. № 7. P. 1322–1332.
63. Bizheva K., Pflug R., Hermann B., Povazay B., Sattmann H., Anger E., Reitsamer H., Popov S., Tylor J.R., Unterhuber A., Qui P., Ahnlet P.K., Drexler W. Optophysiology: depth resolved probing of retinal physiology with functional ultrahigh resolution optical coherence tomography // PNAS (Proceedings of the National Academy of Sciences of America). 2006. Vol. 103. № 13. P. 5066–5071.
64. Tumlinson A.R., Hermann B., Hofer B., Považay B., Margrain T.H., Binns A.M., Drexler W., Techniques for extraction of depth-resolved in vivo human retinal intrinsic optical signals with optical coherence tomography // Jpn. J. Ophthalmol. 2009. Vol. 53. P. 315–326.


Оптическая когерентная томография относительно новый метод исследования глазных структур.

Он требует высокотехнологичного оборудования, и позволяет получить исчерпывающую информацию о состоянии сетчатки и передних структур глаза без травмирующего вмешательства. Инфракрасный луч света не причиняет повреждений, не приносит неудобств ни во время проведения диагностики, после нее.

Сама идея проведения диагностики с помощью инфракрасного излучения была предложена только в 1995 году офтальмологом из США Кармен Пулиафито. Первый же аппарат для проведения оптической когерентной томографии появился спустя 2 года. Сегодня этот сравнительно молодой способ исследования глаза получил широкое применение.

Устройство томографа для ОКТ

Это высокотехнологичный аппарат, который состоит из устройства для продуцирования низкокогерентных лучей ультрафиолетового спектра, отражательных зеркал, интерферометра Майкельсона и компьютерного оборудования.

Лучи генерируемые устройством разделяются на два пучка, один проходит через ткани глаза, а другой через специальные зеркала. Фиксируется и анализируется скорость прохождения световых лучей (при УЗИ анализируют радиоволны), но не прямые (их скорость слишком высока), а отраженные.


Структуры глаза (кожа, слизистые, хрусталик, стекловидное тело, вены и т. д.) по-разному отражают световые лучи, эта разница и фиксируется интерферометром. Оборудованием проводится преобразование числовых измерений в изображение, которое выводится на монитор. Лучи с высоким уровнем отражения рисуются в «теплом» спектре (красные оттенки), чем ниже уровень отражения, тем холоднее цвет (вплоть до темно-синего и черного). Так, стекловидное тело на изображении будет черным (оно свет почти не отражает), а нервные волокна (как и эпителий) имеют высокую степень отражения и окажутся красного цвета.

Отсюда следует, что исследование будет затруднено при помутнении оптических сред, отеке роговицы, при кровоизлияниях.

Сканирование проводится в двух плоскостях вдоль, а также поперек, делается множество плоскостных срезов. Это позволяет смоделировать точную трехмерную картинку глаза. Уровень разрешения от 1 до 15 микрон. Для исследования дна сетчатки применяют луч с длиной волны 830 нм., для изучения переднего отдела – 1310 нм.

Уровень технического оснащения сегодня позволяет исследовать передний отдел и задний полюс глаза. Для получения качественных результатов диагностики, необходимо прозрачность оптических сред и слезная пленка в норме (нередко применяют искусственную слезу), зрачок должен быть расширен (используют специальные препараты-мидриатики).

Полученный и расшифрованный результат, будет представлен в форме карт, рисунков и протоколов.

Многие офтальмологи называют ОКТ не инвазивной биопсией, что, по сути, является правдой.

Когда назначают когерентную томографию

Это обследование назначаю при целом ряде заболеваний переднего отдела глаза. Среди них окажутся:

  • различные формы глаукомы (исследуют и оценивают работу систем дренажа),
  • язвы роговицы,
  • сложные кератиты.

Когерентная томография назначается для изучения передних отделов глаза перед и после проведения:

  • лазерной коррекции зрения, кератопластики,
  • имплантации факичной интраокулярной оптической линзы (ИОЛ), или интрастромальных роговичных колец.

Исследуют задний отдел глаза при выявлении:

  • возрастных, дегенеративных изменений сетчатки;
  • макулярных разрывов или макулярных кистоидных отеков.
  • при подозрении на отслойку сетчатки,
  • в случае наличия эпиретинальной мембраны (целлофановой макулы),
  • при аномалиях зрительного диска, разрывах, атрофиях,
  • при тромбозах центральной вены сетчатки,
  • в случае подозрения на полиферативную витреоретинопатию или при ее выявлении.

Нередко когерентную томографию назначают больным с диабетической ретинопатией (им проводят обследование без мидриатиков), а также в целом ряде других офтальмологических заболеваний, при которых требуется биопсия.

Процедура обследования на когерентном томографе

Сама диагностика абсолютно безболезненна, по времени она занимает 2–3 минуты, проводится в комфортных для пациента условиях. Пациент размещается перед линзой фундус-камеры (голова фиксируется) и смотрит на мигающую точку. Если зрение снижено и точка не видна, то просто нужно сидеть неподвижно и смотреть в одну точку перед собой.

Предварительно оператором будут введены данные о пациенте в компьютер. Затем в течение 1–2 минут проводится сканирование. От больного требуется не двигаться и не моргать.

После этого полученные данные обрабатываются. Полученные результаты сравниваются с имеющимися в базе данными здоровых людей, цифровые данные преобразовываются в карты, рисунки удобные для восприятия. Все результаты будут представлены испытуемому в виде карт, таблиц и протоколов.

Результаты когерентной томографии

Расшифровка результатов проводится квалифицированным специалистом и будет содержать следующие аспекты:

  • морфологические особенности тканей: внешние контуры, взаимоотношение и соотношение различных слоев, структур и отделов, соединительные ткани;
  • показатели светоотражения: их изменения, повышение или понижение, патологии;
  • количественный анализ: клеточное, тканевое истончение или утолщения, объем структур и тканей (здесь составляется карта диагностируемой поверхности).

При исследовании роговицы обязательно точно указывают локализацию повреждений, их размер и качество, толщину самой роговицы. ОКТ позволяет очень точно определить нужные параметры. Здесь большое значение имеет без контактность методики.

Диагностика радужки дает возможность определить размеры пограничного слоя, стромы и пигментного эпителия. Хотя сигналы от светлой и боле пигментированной радужки разнятся они, в любом случае, дают возможность выявить на ранних (часто доклинических) стадиях такие заболевания, как мезодермальная дистрофия, синдром Франк-Каменецкого, другие.

Когерентная томография сетчатки даст в норме профиль макулы с углублением в центре. Слои должны быть равномерными по толщине, без очагов деструкции. Нервные волокна и пигментный эпителий будут иметь теплые (красно-желтые) оттенки, средними отражательными способностями обладают плексиформный и ядерный слои, они окажутся синими и зелеными, черным будет слой фоторецепторов (он обладает низкими отражательными способностями), наружный слой ярко-красного цвета. Измерения размеров должно быть таким: в области ямки желтого пятна чуть больше 162 мкм, у его края – 235 мкм.

Исследование зрительного нерва дает возможность оценить толщину слоя нервных волокон (около 2 мм), их угол наклона относительно диска зрительного нерва и сетчатки.

Выявление патологий на когерентном томографе

Во время когерентной томографии выявляют множество патологий как передних отделов глаза, так и сетчатки. Особенно ценными будут исследования сетчатки и макулы, так как проведенное исследование позволяет определить патологию так же точно, как и при биопсии. Но ОКТ не является инвазивной методикой и не нарушает целостности тканей. Так, среди наиболее часто выявляемых заболеваний будут:

  • Дефекты сетчатки, идиопатические разрывы . Они часто встречаются у пожилых людей, возникают без видимых на то причин. Исследование устанавливает очаг, размеры на всех стадиях заболевания, а также дегенеративные процессы вокруг очага, наличие интераритинальных кист.
  • Возрастные макулодистрофии. ОКТ позволяет выявить эти заболевания (характерны для пожилых), а также оценить эффективность проводимой терапии.
  • Диабетический отек отнесен к самым тяжелым формам диабетической ретинопатии, он сложно поддается лечению. Когерентная томография позволяет определить зону поражения, выраженность и дегенерацию тканей, степень поражения витреомакулярного пространства.
  • Застойный диск . По степени светоотражения определяют гидратацию и дегенерацию тканей. Наличие застойного диска будет свидетельствовать о высоком внутричерепном давлении.
  • Врожденные дефекты ямки зрительного нерва . Среди них наиболее часто встречается расслоение.
  • Пигментный ретинит . Определение этого прогрессирующего наследственного заболевания нередко представляет сложность. Метод очень информативен для малышей, когда другие методики бессильны перед беспокойством грудничка.

Возможности современной офтальмологии значительно расширены в сравнении с методами диагностики и лечения заболеваний органов зрения еще каких-то пятьдесят лет назад. Сегодня для постановки точного диагноза, выявления малейших изменений в структурах глаза применяются сложные, высокотехнологичные аппараты и методики. Оптическая когерентная томография (ОКТ), выполняемая с помощью специального сканнера – один из таких методов. Что это такое, кому и когда нужно проводить подобное обследование, как правильно к нему подготовиться, существуют ли противопоказания и возможны ли осложнения – ответы на все эти вопросы ниже.

Преимущества и особенности

Оптическая когерентная томография сетчатки и других элементов глаза – это инновационное офтальмологическое исследование, при котором визуализируются в высоком качестве разрешения поверхностные и глубинные структуры органов зрения. Этот метод является сравнительно новым, не проинформированные пациенты относятся к нему с предубеждением. И совершенно напрасно, так как на сегодняшний день ОКТ считается лучшим, что существует в диагностической офтальмологии.

Выполнение ОКТ занимает всего лишь несколько секунд, а результаты будут подготовлены максимум через час после обследования – можно заехать в клинику на обеденном перерыве, выполнить ОКТ, сразу же получить диагноз и в тот же день начать лечение

К основным преимуществам ОКТ можно отнести:

  • возможность исследовать одновременно оба глаза;
  • скорость процедуры и оперативность получения точных результатов для постановки диагноза;
  • за один сеанс врач получает четкое представление о состоянии макулы, зрительного нерва, сетчатки, роговицы, артерий и капилляров глаза на микроскопическом уровне;
  • ткани элементов глаза можно досконально изучить без биопсии;
  • разрешающие способности ОКТ во много раз превышают показатели обычной компьютерной томографии или УЗИ – обнаруживаются повреждения тканей размером не более 4 микрон, патологические изменения на самых ранних стадиях;
  • не требуется вводить внутривенно контрастные окрашивающие вещества;
  • процедура относится к неинвазивным, потому почти не имеет противопоказаний, не требует специальной подготовки и восстановительного периода.

При проведении когерентной томографии пациент не получает никакого радиационного облучения, что также является большим преимуществом с учетом того, какому вредному воздействию внешних факторов и без этого подвергается каждый современный человек.

В чем суть процедуры

Если через организм человека пропустить световые волны, они будут отражаться от различных органов по-разному. Время задержки световых волн и время их прохождения через элементы глаза, интенсивность отражения замеряют с помощью специальных приборов при проведении томографии. Затем они переносятся на экран, после чего проводятся расшифровка и анализ полученных данных.

Окт сетчатки глаза – абсолютно безопасный и безболезненный метод, поскольку приборы не контактируют с органами зрения, ничего не вводится подкожно или внутрь глазных структур. Но при этом он обеспечивает куда более высокую информативность, чем стандартные КТ или МРТ.


Вот так выглядит изображение на мониторе компьютера, полученное путем сканирования при ОКТ, для его расшифровки потребуются особые познания и навыки специалиста

Именно в способе расшифровки получаемого отражения кроется главная особенность ОКТ. Дело в том, что волны света движутся с очень высокой скоростью, что не позволяет напрямую замерить необходимые показатели. Для этих целей используется специальный прибор – интерферометр Мейкельсона. Он разделяет световую волну на два луча, затем один луч пропускается через глазные структуры, которые необходимо исследовать. А другой направляется на зеркальную поверхность.

Если требуется выполнить обследование сетчатки и макулярной зоны глаза, применяется низкокогерентный инфракрасный луч длиной 830 нм. Если же нужно сделать ОКТ передней камеры глаза, будет нужна волна длиной 1310 нм.

Оба луча соединяются и попадают в фотодетектор. Там они преображаются в интерференционную картинку, которая затем анализируется компьютерной программой и выводится на монитор в виде псевдоизображения. Что же оно покажет? Участки с высокой степенью отражения будут окрашены в более теплые оттенки, а те, которые отражают световые волны слабо, выглядят на картинке почти черными. «Теплыми» на картинке отображаются нервные волокна и пигментный эпителий. Ядерные и плексиформные прослойки сетчатки обладают средней степенью отражаемости. А стекловидное тело выглядит черным, так как оно практически прозрачное и хорошо пропускает световые волны, почти не отражая их.

Для получения полноценной, информативной картинки необходимо пропустить световые волны через глазное яблоко в двух направлениях: поперечном и продольном. Искажения получаемого изображения могут возникать, если роговица отечна, имеют место помутнения стекловидного тела, кровоизлияния, инородные частички.


Одной процедуры продолжительностью менее минуты достаточно, чтобы без инвазивного вмешательства получить максимально полную информацию о состоянии глазных структур, выявить развивающиеся патологии, их формы и стадии

Что можно сделать с помощью оптической томографии:

  • Определить толщину глазных структур.
  • Установить размеры диска зрительного нерва.
  • Выявить и оценить изменения структуры сетчатки и нервных волокон.
  • Оценить состояние элементов переднего участка глазного яблока.

Таким образом, при проведении ОКТ врач-офтальмолог получает возможность за один сеанс изучить все составляющие глаза. Но наиболее информативным и точным получается исследование сетчатки. На сегодняшний день оптическая когерентная томография – самый оптимальный и информативный способ оценки состояния макулярной зоны органов зрения.

Показания к проведению

Оптическую томографию в принципе можно назначать каждому пациенту, обратившемуся к офтальмологу с какими-либо жалобами. Но в отдельных случаях без этой процедуры не обойтись, она заменяет КТ и МРТ и даже опережает их по информативности. Показаниями к проведению ОКТ являются такие симптомы и жалобы пациентов:

  • «Мушки», паутинки, молнии и вспышки перед глазами.
  • Помутнение зрительной картинки.
  • Неожиданное и резкое снижение зрения в одном или обоих глазах.
  • Сильная боль в органах зрения.
  • Значительное повышение внутриглазного давления при глаукоме или по другим причинам.
  • Экзофтальм – выпячивание глазного яблока из орбиты самопроизвольно или после травмы.


Глаукома, повышение внутриглазного давления, изменения диска зрительного нерва, подозрения на отслойку сетчатки, а также подготовка к хирургическим вмешательствам на глазах – все это показания к проведению оптической когерентной томографии

Если предстоит коррекция зрения с использованием лазера, то подобное исследование проводят до операции и после нее, чтобы точно определить угол передней камеры глаза и оценить степень дренажа внутриглазной жидкости (если диагностирована глаукома). Также ОКТ необходима при проведении кератопластики, вживления интрастромальных колец или интраокулярных линз.

Что можно определить и обнаружить с помощью когерентной томографии:

  • изменения внутриглазного давления;
  • врожденные или приобретенные дегенеративные изменения тканей сетчатки;
  • злокачественные и доброкачественные новообразования в структурах глаза;
  • симптомы и степень выраженности диабетической ретинопатии;
  • различные патологии диска зрительного нерва;
  • полиферативную витреоретинопатию;
  • эпиретинальную мембрану;
  • тромбы коронарных артерий или центральной вены глаза и другие сосудистые изменения;
  • разрывы или отслойку макулы;
  • макулярный отек, сопровождающийся формированием кист;
  • язвы роговицы;
  • глубоко проникающий кератит;
  • прогрессирующая близорукость.

Благодаря такому диагностическому исследованию можно выявить даже незначительные изменения и аномалии органов зрения, правильно поставить диагноз, определить степень поражений и оптимальный метод лечения. ОКТ на самом деле помогает сохранить или восстановить зрительные функции пациента. А поскольку процедура совершенно безопасна и безболезненна, часто ее выполняют в профилактических целях при заболеваниях, которые могут осложняться патологиями со стороны глаз – при сахарном диабете, гипертонической болезни, нарушениях мозгового кровообращения, после травм или хирургического вмешательства.

Когда нельзя проводить ОКТ

Наличие кардиостимулятора и других имплантов, состояния, при которых пациент не может фокусировать взгляд, находится в бессознательном состоянии или не способен контролировать свои эмоции и движения, большинство диагностических исследований не проводится. В случае с когерентной томографией все иначе. Процедуру такого рода можно проводить при спутанности сознания и нестабильном психоэмоциональном состоянии пациента.


В отличие от МРТ и КТ, которые хотя информативны, но имеют ряд противопоказаний, ОКТ можно применять для обследования детей без всяких опасений – ребенок не испугается процедуры и не получит никаких осложнений

Главное и фактически единственное препятствие к выполнению ОКТ – это одновременное проведение других диагностических исследований. В день, на который назначена ОКТ, применять какие-либо другие диагностические методы обследования органов зрения нельзя. Если же пациент уже подвергался другим процедурам, то ОКТ переносят на другой день.

Также помехой к получению четкого, информативного изображения может стать близорукость высокой степени или сильное помутнение роговицы и других элементов глазного яблока. В этом случае световые волны будут плохо отражаться и давать искаженное изображение.

Техника выполнения ОКТ

Сразу же нужно сказать, что оптическую когерентную томографию в районных поликлиниках обычно не проводят, так как офтальмологические кабинеты не располагают необходимым оборудованием. Сделать ОКТ можно только в специализированных частных медицинских учреждениях. В крупных городах не составит труда найти заслуживающий доверия офтальмологический кабинет, располагающий ОКТ-сканнером. о проведении процедуры желательно договориться заблаговременно, стоимость когерентной томографии для одного глаза начинается от 800 рублей.

Никакой подготовки к проведению ОКТ не требуется, нужен только функционирующий ОКТ-сканнер и сам пациент. Обследуемого попросят сесть на стул и сфокусировать взгляд на указанной отметке. Если глаз, структуру которого нужно исследовать, не способен сфокусироваться, то взгляд фиксируется насколько возможно другим, здоровым глазом. Находиться в неподвижном состоянии требуется не более двух минут – этого достаточно, чтобы пропустить пучки инфракрасного излучения через глазное яблоко.

В течение этого периода делается несколько снимков в разных плоскостях, после чего медицинский сотрудник отбирает самые четкие и качественные. Их компьютерная система сверяет с имеющейся базой данных, составленной на основании обследований других пациентов. Представлена база различными таблицами и схемами. Чем меньше будет обнаружено совпадений, тем выше вероятность, что структуры глаза обследуемого пациента патологически изменены. Поскольку все аналитические действия и преобразования полученных данных выполняются компьютерными программами в автоматическом режиме, на получение результатов уйдет не более получаса.

ОКТ-сканнер производит идеально точные измерения, обрабатывает их быстро и качественно. Но для постановки корректного диагноза необходимо еще правильно расшифровать полученные результаты. А это требует высокого профессионализма и глубоких познаний в области гистологии сетчатки и хориоидеи врача-офтальмолога. По этой причине расшифровка результатов исследований и постановка диагноза проводятся несколькими специалистами.

Резюме: большинство офтальмологических заболеваний крайне сложно распознать и диагностировать на ранних стадиях, тем более – установить реальную степень поражения глазных структур. При подозрительных симптомах стандартно назначается офтальмоскопия, но этого метода недостаточно, чтобы получить максимально точную картину о состоянии глаз. Более полную информацию дают компьютерная томография и магнитно-резонансная томография, но эти диагностические мероприятия имеют ряд противопоказаний. Оптическая когерентная томография совершенно безопасна и безвредна, ее можно выполнять даже в тех случаях, когда другие методы обследования органов зрения противопоказаны. На сегодняшний день это единственный неинвазивный способ получить максимально полную информацию о состоянии глаз. Единственная сложность, которая может возникнуть – не все офтальмологические кабинеты располагают необходимой для проведения процедуры аппаратурой.



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Далай-лама отвечает на вопросы учеников Много людей из России приезжают на эти встречи Далай-лама отвечает на вопросы учеников Много людей из России приезжают на эти встречи Самостоятельное путешествие — поворот судьбы или случайная неожиданность Самостоятельное путешествие — поворот судьбы или случайная неожиданность Шоколадная фабрика на бали или повод вернуться в детство, индонезия Шоколадная фабрика на бали или повод вернуться в детство, индонезия